2015-2016学年山东省日照市五莲县九年级(上)期末数学试卷一、选择题:本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共40分.在每小题给出的四个选项中,只有一项是正确的,请将正确的字母代号涂在答题卡相应位置上.1.下列方程是一元二次方程的是()A.(x﹣3)x=x2+2B.ax2+bx+c=0C.3x2﹣+2=0D.2x2=12.下列标识中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.把方程x2﹣4x+1=0配方,化为(x+m)2=n的形式应为()A.2=3C.2=34.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()A.34°B.36°C.38°D.40°5.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.4B.5C.D.26.将一个正六面体骰子连掷两次,它们的点数都是4的概率是()A.B.C.D.7.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A.B.C.D.8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.9.若m为实数,则函数y=(m﹣2)x2+mx+1的图象与坐标轴交点的个数为()A.3B.2C.1或2D.2或310.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.211.如图,BC是⊙A的内接正十边形的一边,BD平分∠ABC交AC于点D,则下列结论正确的有()①BC=BD=AD;②BC2=DCAC;③AB=2AD;④BC=AC.A.1个B.2个C.3个D.4个12.已知抛物线y=ax2+bx+c中,4a﹣b=0,a﹣b+c>0,抛物线与x轴有两个不同的交点,且这两个交点之间的距离小于2.则下列结论:①abc<0,②c>0,③a+b+c>0,④4a>c,其中,正确结论的个数是()A.4B.3C.2D.1二、填空题:本大题共4个小题,每小题4分,共16分,把答案写在题中横线上.13.若⊙O的弦AB所对的圆心角∠AOB=50°,则弦AB所对的圆周角的度数为.14.如图,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发秒时,四边形DFCE的面积为20cm2.15.如图所示,AB是半圆的直径,∠C的两边分别与半圆相切于A、D两点,DE⊥AB,垂足为E,AE=3,BE=1,则图中阴影部分的面积为.16.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、解答题:本大题共6小题,共64分.解答应写出文字说明、证明过程或演算步骤.17.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.18.关于x的方程有两个不相等的实数根(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.19.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成一个长方形的花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;写出自变量x的取值范围.(2)怎样围才能使长方形花圃的面积最大?最大值为多少?20.已知正比例函数y=2x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为P点,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)如果点B为反比例函数在第一象限图象上的点(点B与点A不重合),且点B的横坐标为2,在x轴上求一点M,使MA+MB最小.21.如图,AB为⊙O的直径,弦CD∥AB,E是AB延长线上一点,∠CDB=∠ADE.(1)DE是⊙O的切线吗?请说明理由;(2)求证:AC2=CDBE;(3)若AB=10,AC=4,求BE的长.22.如图,二次函数y=﹣+2与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.(1)求直线AC的解析式;(2)设△PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形.直接写出所有满足条件的M点的坐标;(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由.2015-2016学年山东省日照市五莲县九年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共40分.在每小题给出的四个选项中,只有一项是正确的,请将正确的字母代号涂在答题卡相应位置上.1.下列方程是一元二次方程的是()A.(x﹣3)x=x2+2B.ax2+bx+c=0C.3x2﹣+2=0D.2x2=1【考点】一元二次方程的定义;方程的定义.【专题】方程思想.【分析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高常数是2整式方程是一元二次方程.对每个方程进行分析,作出判断.【解答】解:A:化简后不含二次项,不是一元二次方程;B:当a=0时,不是一元二次方程;C:是分式方程,不是整式方程,所以不是一元二次方程;D:符合一元二次方程的定义,是一元二次方程.故本题选D.【点评】本题考查的是一元二次方程的定义,根据定义对每个方程进行分析,作出判断.2.下列标识中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形性质即可做出判断.【解答】解:①既是中心对称图形,也是轴对称图形,故此选项正确;②不是中心对称图形,是轴对称图形,故此选项错误;③不是中心对称图形,是轴对称图形,故此选项错误;④是中心对称图形,不是轴对称图形,故此选项正确.故选:A.【点评】主要考查了中心对称图形以及轴对称图形的定义,根据题意灵活区分定义是解决问题的关键3.把方程x2﹣4x+1=0配方,化为(x+m)2=n的形式应为()A.2=3C.2=3【考点】解一元二次方程-配方法.【分析】利用完全平方公式配方即可求解.【解答】解:把方程x2﹣4x+1=0配方,得(x﹣2)2=3,故选:B.【点评】本题主要考查了解一元一次方程的配方法,解题的关键是熟记安全平方公式.4.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()A.34°B.36°C.38°D.40°【考点】旋转的性质.【分析】根据旋转的性质求出∠AOD和∠BOC的度数,计算出∠DOB的度数.【解答】解:由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°,∴∠DOB=100°﹣31°﹣31°=38°.故选:C.【点评】本题考查的是旋转的性质,掌握旋转角、旋转方向和旋转中心的概念是解题的关键.5.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.4B.5C.D.2【考点】圆锥的计算.【分析】首先连接AO,求出AB的长度是多少;然后求出扇形的弧长为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.【解答】解:如图1,连接AO,∵AB=AC,点O是BC的中点,∴AO⊥BC,又∵∠BAC=90°,∴∠ABO=∠AC0=45°,∴AB=(m),∴==2π(m),∴将剪下的扇形围成的圆锥的半径是:2π÷2π=(m),∴圆锥的高是:=(m).故选:C.【点评】此题主要考查了圆锥的计算,要熟练掌握,解答此题的关键是求出扇形围成的圆锥的底面半径是多少.6.将一个正六面体骰子连掷两次,它们的点数都是4的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:每个骰子上都有6个数,那么投掷2次,将有6×6=36种情况,它们的点数都是4的只有1种情况,∴它们的点数都是4的概率是.故选D.【点评】考查了列表法和树状图法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.注意本题是放回实验.7.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由平行四边形的性质易证两三角形相似,根据相似三角形的性质可解.【解答】解:∵ABCD是平行四边形∴AD∥BC∴△BFE∽△DFA∴BE:AD=BF:FD=1:3∴BE:EC=BE:(BC﹣BE)=BE:(AD﹣BE)=1:(3﹣1)∴BE:EC=1:2故选A.【点评】本题考查了相似三角形的性质;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【专题】压轴题;数形结合.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.9.若m为实数,则函数y=(m﹣2)x2+mx+1的图象与坐标轴交点的个数为()A.3B.2C.1或2D.2或3【考点】抛物线与x轴的交点;一次函数图象上点的坐标特征.【分析】①当m=2时,函数y=(m﹣2)x2+mx+1为一次函数,所以它的图象与坐标轴交点的个数为2;②当m≠2时,利用(m﹣2)x2+mx+1=0的根的个数,△=m2﹣4(m﹣2)=(m﹣2)2+4>0,得方程有两个不同的根,即函数与x轴的交点个数为2个,与y轴的交点个数为1,得出函数y=(m﹣2)x2+mx+1的图象与坐标轴交点的个数为3.【解答】解:①当m=2时,y=2x