汕头市潮南区2016-2017年八年级上期中数学试卷(A)含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

广东省汕头市潮南区2016-2017学年八年级(上)期中数学试卷(A卷)(解析版)一、选择题(共10小题,每小题3分,满分30分)1.下列大学的校徽图案是轴对称图形的是()A.浙江大学B.北京大学C.中国人民大学D.清华大学2.已知△ABC中,∠A=20°,∠B=70°,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D4.六边形的内角和是()A.1080°B.900°C.720°D.540°5.如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AEB.DB=ECC.∠ADE=∠CD.DE=BC6.如图,AC⊥BD于P,AP=CP,增加下列一个条件:(1)BP=DP;(2)AB=CD;(3)∠A=∠C,其中能判定△ABP≌△CDP的条件有()A.0个B.1个C.2个D.3个7.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4B.3C.6D.58.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4C.3D.不能确定9.如图,AC、BD交于E点,AC=BD,AE=BE,∠B=35°,∠1=95°,则∠D的度数是()A.60°B.35°C.50°D.75°10.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°二、填空题(共6小题,每小题4分,满分24分)11.如图,自行车的三角形支架,这是利用三角形具有性.12.Rt△ABC中,∠C=90°,∠B=2∠A,BC=3cm,AB=cm.13.将点A(1,2)向左平移3个单位长度得点A′,则点A′关于y轴对称的点的坐标是.14.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.16.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为.三、解答题(共9小题,满分66分)17.(6分)如图,四边形ABCD中,点E在BC上,∠A+∠ADE=180°,∠B=78°,∠C=60°,求∠EDC的度数.18.(6分)如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,求点D到直线AB的距离.19.(6分)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,BC=FE.求证:AC∥DE.20.(7分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.求证:AC=DC.21.(7分)如图,在一条河的同岸有两个村庄A和B,两村要在河上合修一座便民桥,桥修在什么地方可以使桥到两村的距离之和最短?22.(7分)如图,AD⊥BC于点D,∠B=∠DAC,点E在BC上,△EAC是以EC为底的等腰三角形,AB=4,AE=3.(1)判断△ABC的形状;(2)求△ABC的面积.23.(9分)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.24.(9分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点F.求证:BF=AC.25.(9分)如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形.2016-2017学年广东省汕头市潮南区八年级(上)期中数学试卷(A卷)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列大学的校徽图案是轴对称图形的是()A.浙江大学B.北京大学C.中国人民大学D.清华大学【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选:B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.已知△ABC中,∠A=20°,∠B=70°,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【考点】三角形内角和定理.【分析】先求出∠C的度数,进而可得出结论.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选B.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D【考点】全等三角形的性质.【分析】只要牢记三角形只能有一个钝角就易解了.【解答】解:∵一个三角形中只能有一个钝角.∴100°的角只能是等腰三角形中的顶角.∴∠B=∠C是底角,∠A是顶角∴△ABC中与这个角对应的角是∠A.故选A.【点评】本题考查的知识点为:全等的三角形的对应角相等,知道一个三角形中只能有一个钝角是解决本题的关键.4.六边形的内角和是()A.1080°B.900°C.720°D.540°【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°列式计算即可得解.【解答】解:(6﹣2)•180°=720°.故选C.【点评】本题考查了多边形的内角和外角,熟记内角和公式是解题的关键.5.如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AEB.DB=ECC.∠ADE=∠CD.DE=BC【考点】等腰三角形的判定与性质;平行线的性质.【分析】由DE与BC平行,得到三角形ADE与三角形ABC相似,由相似得比例,根据AB=AC,得到AD=AE,进而确定出DB=EC,再由两直线平行同位角相等,以及等腰三角形的底角相等,等量代换得到∠ADE=∠C,而DE不一定为中位线,即DE不一定为BC的一半,即可得到正确选项.【解答】解:∵DE∥BC,∴=,∠ADE=∠B,∵AB=AC,∴AD=AE,DB=EC,∠B=∠C,∴∠ADE=∠C,而DE不一定等于BC,故选D.【点评】此题考查了等腰三角形的判定与性质,以及平行线的性质,熟练掌握等腰三角形的判定与性质是解本题的关键.6.如图,AC⊥BD于P,AP=CP,增加下列一个条件:(1)BP=DP;(2)AB=CD;(3)∠A=∠C,其中能判定△ABP≌△CDP的条件有()A.0个B.1个C.2个D.3个【考点】全等三角形的判定.【分析】要使△ABP≌△CDP,已知AC⊥BD于点P,AP=CP,即一角一边,则我们增加直角边、斜边或另一组角,利用SAS、HL、AAS判定其全等.【解答】解:∵AC⊥BD于点P,AP=CP,又AB=CD,∴△ABP≌△CDP.∴增加的条件是BP=DP或AB=CD或∠A=∠C或∠B=∠D.故添加BP=DP或AB=CD或∠A=∠C或∠B=∠D.故选D【点评】本题考查了直角三角形全等的判定;这是一道考查三角形全等的识别方法的开放性题目,答案可有多种,注意要选择简单的,明显的添加.7.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4B.3C.6D.5【考点】角平分线的性质.【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.8.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4C.3D.不能确定【考点】全等三角形的性质.【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x﹣2与5是对应边,或3x﹣2与7是对应边,计算发现,3x﹣2=5时,2x﹣1≠7,故3x﹣2与5不是对应边.【解答】解:∵△ABC与△DEF全等,当3x﹣2=5,2x﹣1=7,x=,把x=代入2x﹣1中,2x﹣1≠7,∴3x﹣2与5不是对应边,当3x﹣2=7时,x=3,把x=3代入2x﹣1中,2x﹣1=5,故选:C.【点评】此题主要考查了全等三角形的性质,关键是掌握性质定理,要分情况讨论.9.如图,AC、BD交于E点,AC=BD,AE=BE,∠B=35°,∠1=95°,则∠D的度数是()A.60°B.35°C.50°D.75°【考点】全等三角形的判定与性质.【分析】利用SAS定理证明△ADE≌△BCE,得到∠A=∠B=35°,根据三角形的外角的性质解答即可.【解答】解:∵AC=BD,AE=BE,∴ED=EC,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠A=∠B=35°,∴∠D=∠1﹣∠A=60°,故选:A.【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.10.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°【考点】全等三角形的判定与性质.【分析】首先证明△DBE≌△ECF,进而得到∠EFC=∠DEB,再根据三角形内角和计算出∠CFE+∠FEC的度数,进而得到∠DEB+∠FEC的度数,然后可算出∠DEF的度数.【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°,故选:C.【点评】本题考查了全等三角形的性质和判定,以及三角形内角和的定理,关键是掌握三角形内角和是180°.二、填空题(共6小题,每小题4分,满分24分)11.如图,自行车的三角形支架,这是利用三角形具有稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:自行车的三角形车架,这是利用了三角形的稳定性.故答案为:稳定性.【点评】本题考查了三角形的稳定性,是基础题.12.Rt△ABC中,∠C=90°,∠B=2∠A,BC=3cm,AB=6cm.【考点】直角三角形的性质.【分析】根据直角三角形的性质即可解答.【解答】解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为:6.【点评】此题较简单,只要熟记30°角所对的直角边等于斜边的一半即可解答.13.将点A(1,2)向左平移3个单位长度得点A′,则点A′关于y轴对称的点的坐标是(2,2).【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】根据题意可以求得点A′的坐标,从而可以求得点A′关于y轴对称的点的坐标,本题得以解决.【解答】解:∵将点A(1,2)向左平移3个单位长度得点A′,∴点A′的坐标为(﹣2,2),∴点A′关于y轴对称的点的坐标是(2,2),故答案为:(2,2).【点评】本题考查关于x轴、y轴对称的点的坐标、坐标与图形的变化﹣平移,解题的关键是明确题意,找出所求点需要的条件.14.如图,在△ABC中,AB=A

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功