2015-2016学年广东省汕头市潮南区九年级(下)第三次半月考数学试卷一、填空题(每小题3分,共36分)1.根据图示填空:(1)sinB==(2)cos∠ACD=.2.若α是锐角且sinα=,则α的度数是.3.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.4.在△ABC中,∠C=90°,cosB=,则a﹕b﹕c为.5.在Rt△ABC中,∠C=90°,若AC=2BC,则cosA=.6.已知在Rt△ABC中,∠C=90°,AC=4,cotA=,则BC的长是.7.已知a为锐角,tan(90°﹣a)=,则a的度数为.8.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度比为.9.直角三角形中,若sin35°=cosα,则α=.10.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).11.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C=度.12.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.二、选择题(每小题3分,共24分)13.在直角三角形中,各边的长度都扩大3倍,则锐角A的三角函数值()A.也扩大3倍B.缩小为原来的C.都不变D.有的扩大,有的缩小14.在△ABC中,∠A=105°,∠B=45°,cosC的值是()A.B.C.D.15.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5C.2D.316.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是()A.B.C.D.17.在Rt△ABC中,∠C=90°,则tanA•tanB的值一定()A.小于1B.不小于1C.大于1D.等于118.已知A为锐角,且cosA≤,那么()A.0°≤A≤60°B.60°≤A<90°C.0°<A≤30°D.30°≤A<90°19.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米20.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1B.C.3D.三、计算下列各题(本题14分)21.计算:﹣(﹣2cos30°)2+(tan45°)﹣1.22.计算:+sin45°.四、(本题9分)23.在Rt△ABC中,∠C=90°,a=8,∠B=60°,解这个直角三角形.五、(本题9分)24.如图,已知一个等腰三角形ABC的底边长为10,面积为25,求:(1)△ABC的三个内角;(2)△ABC的周长.六、(本题12分)25.某市为了改善市区交通状况,计划修建一座新大桥,如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直与新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米,sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.)七、(本题16分)26.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?2015-2016学年广东省汕头市潮南区九年级(下)第三次半月考数学试卷参考答案与试题解析一、填空题(每小题3分,共36分)1.根据图示填空:(1)sinB==(2)cos∠ACD=.【考点】锐角三角函数的定义.【分析】(1)、(2)直接根据锐角三角函数的定义即可得出结论.【解答】解:(1)sinB==.故答案为:BC,AC;(2)cos∠ACD=.故答案为:AC.2.若α是锐角且sinα=,则α的度数是60°.【考点】特殊角的三角函数值.【分析】结合各特殊角的三角函数值,进行求解即可.【解答】解:∵α是锐角且sinα=,∴∠α=60°.故答案为:60°.3.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义(tanA=)求出即可.【解答】解:tanA==,故答案为:.4.在△ABC中,∠C=90°,cosB=,则a﹕b﹕c为2::3.【考点】解直角三角形.【分析】先利用余弦的定义得到cosB==,则可设BC=2k,AB=3k,再利用勾股定理计算出AC,然后计算三角形三边的比.【解答】解:如图,∵cosB==,∴可设BC=2k,AB=3k,∴AC==k,∴a:b:c=2k:k:3k=2::3.故答案为2::3.5.在Rt△ABC中,∠C=90°,若AC=2BC,则cosA=.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB与BC的关系,根据余弦函数的定义,可得答案.【解答】解:由勾股定理,得AB=BC.由余弦函数的定义,得cosA===.故答案是:.6.已知在Rt△ABC中,∠C=90°,AC=4,cotA=,则BC的长是8.【考点】锐角三角函数的定义.【分析】根据题意画出图形,进而利用锐角三角函数关系求出即可.【解答】解:如图所示:∵在Rt△ABC中,∠C=90°,AC=4,cotA=,∴cotA==,∴BC=8.故答案为:8.7.已知a为锐角,tan(90°﹣a)=,则a的度数为30°.【考点】特殊角的三角函数值.【分析】先根据α为锐角及tan60°=解答即可.【解答】解:∵α为锐角,tan(90°﹣α)=,∴90°﹣α=60°,∴α=30°.故答案为:30°.8.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度比为1:2.【考点】解直角三角形的应用-坡度坡角问题.【分析】利用勾股定理求得水平距离.根据坡度定义求解.【解答】解:∵某人沿着有一定坡度的坡面前进了10米.此时他与水平地面的垂直距离为2米,根据勾股定理可以求出他前进的水平距离为4米.所以这个坡面的坡度比为2:4=1:2.9.直角三角形中,若sin35°=cosα,则α=55°.【考点】互余两角三角函数的关系.【分析】根据在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:一个角的正弦值等于这个角的余角的余弦值,即sinA=cos(90°﹣∠A),求解即可.【解答】解:根据直角三角形中正余弦之间的关系,可得:sin35°=cos(90°﹣35°)=cos55°,∴α=55°.故答案为:55°.10.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为7tanα米(用含α的代数式表示).【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.【解答】解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.11.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C=120度.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出sinA与cosB的值,再根据特殊角三角函数值求出∠A与∠B的度数,根据三角形内角和定理即可得出结论.【解答】解:∵在△ABC中,|sinA﹣|+(﹣cosB)2=0,∴sinA=,cosB=,∴∠A=30°,∠B=30°,∴∠C=180°﹣30°﹣30°=120°.故答案为:120.12.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.【考点】解直角三角形;勾股定理.【分析】首先在△ABC中,根据三角函数值计算出AC的长,再利用勾股定理计算出AD的长,然后根据余弦定义可算出cos∠ADC.【解答】解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案为:.二、选择题(每小题3分,共24分)13.在直角三角形中,各边的长度都扩大3倍,则锐角A的三角函数值()A.也扩大3倍B.缩小为原来的C.都不变D.有的扩大,有的缩小【考点】锐角三角函数的增减性.【分析】理解锐角三角函数的概念:锐角三角函数值即为直角三角形中边的比值.【解答】解:根据锐角三角函数的概念,可知在直角三角形中,各边的长度都扩大3倍,锐角A的三角函数值不变.故选C.14.在△ABC中,∠A=105°,∠B=45°,cosC的值是()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据三角形的内角和,可得∠C,根据特殊角三角函数值,可得答案.【解答】解:由三角形的内角和,得∠C=180°﹣∠A﹣∠B=30°,cosC=cos30°=,故选:C.15.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5C.2D.3【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据正切的定义即可求解.【解答】解:∵点A(t,3)在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.故选:C.16.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是()A.B.C.D.【考点】同角三角函数的关系;互余两角三角函数的关系.【分析】根据互余两角的三角函数关系进行解答.【解答】解:在Rt△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cosB=sinA,∵sinA=,∴cosB=.故选:B.17.在Rt△ABC中,∠C=90°,则tanA•tanB的值一定()A.小于1B.不小于1C.大于1D.等于1【考点】锐角三角函数的定义.【分析】根据正切函数的定义,利用△ABC的边表示出两个三角函数,即可求解.【解答】解:tanA•tanB=•=1,故选D.18.已知A为锐角,且cosA≤,那么()A.0°≤A≤60°B.60°≤A<90°C.0°<A≤30°D.30°≤A<90°【考点】锐角三角函数的增减性.【分析】首先明确cos60°=,再根据余弦函数值随角增大而减小进行分析.【解答】解:∵cos60°=,余弦函数值随角增大而减小,∴当cosA≤时,∠A≥60°.又∠A是锐角,∴60°≤A<90°.故选B.19.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米【考点】解直角三角形的应用-坡度坡角问题.【分析】先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.【解答】解:在Rt△ABC中,∵i==,AC=12米,∴BC=6米,根据勾股定理得:AB==6米,故选:B.20.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1B.C.3D.【考点】圆周角定理;解直角三角形.【分析】由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD=,BC=4,即可求得答案.【解答】解:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=,∴cos∠B=,∴tan∠B=,∵BC=4,∴tan∠B=,∴=,∴AC=.故选:D.三、计算下列各题(本题14分)21.计算:﹣(﹣2cos30°)2+(tan45°)﹣1.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,负整数指数幂法则,以及乘方的意义计算即可得到结果