2014-2015学年新疆、生产建设兵团八年级(下)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣22.在Rt△ABC中,∠C=90°,a、b、c分别表示∠A,∠B,∠C的对边,则下列各式中,不正确的是()A.a2+b2=c2B.c2﹣a2=b2C.a=D.a2﹣b2=c23.平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等4.已知一次函数y=2x+b,其中b<0,它的函数图象可能是()A.B.C.D.5.有15位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设8个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在下列15位同学成绩的统计量中只需知道一个量,它是()A.平均数B.众数C.中位数D.方差6.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2C.6cm2D.8cm27.如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是()A.x>﹣2B.x>3C.x<﹣2D.x<38.如图,网格纸中的小正方形的边长均为1,△ABC的三个顶点都在格点上,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题(共6小题,每小题3分,满分18分)9.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.10.如图,已知AC=6,AB=10,∠ACB=90°,阴影部分是圆的一半,则阴影部分的面积为(结果保留π).11.从知识结构来看,平行四边形、矩形、菱形、正方形的包含关系可以如图表示,则其中最大的椭圆表示的是形,阴影部分表示的是形.12.某中学对八年级学生进行了一次数学测试,甲、乙两班的平均分和方差分别为=79,=79,S甲2=201,S乙2=235,则成绩较整齐是(填甲或乙)班.13.已知一次函数y=kx+b的图象过点(0,1),且y随x增大而增大,请你写出一个符合这个条件的一次函数关系式.14.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为.三、解答题(共8小题,满分50分)15.计算:(1)4﹣+;(2)(﹣)2+2×3.16.如图所示,在平行四边形ABCD中,∠BAD的平分线AE交CD于E,若∠DAE=35°,求∠C与∠B的度数.17.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.18.如图,已知直线l经过点A(1,1)和点B(﹣1,﹣3).试求:(1)直线l的解析式;(2)直线l与坐标轴的交点坐标;(3)直线l与坐标轴围成的三角形面积.19.下表是某校八年级(1)班抽查20位学生某次数学测验的成绩统计表:成绩(分)60708090100人数(人)15xy2(1)若这20名学生成绩的平均分是82分,求x、y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数是a,中位数是b,求的a、b值.20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.21.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.22.观察下列等式:①;②;③;…回答下列问题:(1)仿照上列等式,写出第n个等式:;(2)利用你观察到的规律,化简:;(3)计算:….2014-2015学年新疆、生产建设兵团八年级(下)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.在Rt△ABC中,∠C=90°,a、b、c分别表示∠A,∠B,∠C的对边,则下列各式中,不正确的是()A.a2+b2=c2B.c2﹣a2=b2C.a=D.a2﹣b2=c2【考点】勾股定理.【分析】在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,由此可得出答案.【解答】解:∵∠C=90°,∴c为斜边,∴A、B、C正确.故选D.【点评】本题考查了勾股定理的知识,关键是掌握勾股定理的内容.3.平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等【考点】平行四边形的性质.【分析】根据平行四边形的对角线互相平分可得答案.【解答】解:平行四边形的对角线互相平分,故选:B.【点评】此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.4.已知一次函数y=2x+b,其中b<0,它的函数图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据k=2>0,b<0,可得图象经过一、三、四象限解答即可.【解答】解:因为k=2>0,b<0,可得图象经过一、三、四象限,故选A【点评】本题考查一次函数图象,关键把握准:y>0,图象在x轴上方,y<0,图象在x轴下方,y=0,看图象与x轴交点.5.有15位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设8个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在下列15位同学成绩的统计量中只需知道一个量,它是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】由于比赛设置了8个获奖名额,共有13名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2C.6cm2D.8cm2【考点】正方形的性质.【分析】根据正方形的性质可求得边长,从而根据面积公式即可求得其面积.【解答】解:根据正方形的性质可得,正方形的边长为cm,则其面积为2cm2故选A.【点评】此题主要考查学生对正方形的性质的理解及运用.7.如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是()A.x>﹣2B.x>3C.x<﹣2D.x<3【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】kx+b>0可看作是函数y=kx+b的函数值大于0,然后观察图象得到图象在x轴上方,对应的自变量的取值范围为x>﹣2,这样即可得到不等式kx+b>0的解集.【解答】解:根据题意,kx+b>0,即函数y=kx+b的函数值大于0,图象在x轴上方,对应的自变量的取值范围为x>﹣2,∴不等式kx+b>0的解集是:x>﹣2.故选A.【点评】本题考查了一次函数与一元一次不等式:对于一次函数y=kx+b,当y>0时对应的自变量的取值范围为不等式kx+b>0的解集.8.如图,网格纸中的小正方形的边长均为1,△ABC的三个顶点都在格点上,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】先根据勾股定理求出△ABC各边平方的值,再根据勾股定理的逆定理判断出△ABC的形状即可.【解答】解:由图形可知:AB2=42+62=52;AC2=22+32=13;BC2=82+12=65,∴AB2+AC2=BC2,∴△ABC是直角三角形.故选B.【点评】本题考查的是勾股定理及其逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.二、填空题(共6小题,每小题3分,满分18分)9.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.【考点】函数的图象.【专题】几何图形问题.【分析】他步行回家的平均速度=总路程÷总时间,据此解答即可.【解答】解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.10.如图,已知AC=6,AB=10,∠ACB=90°,阴影部分是圆的一半,则阴影部分的面积为8π(结果保留π).【考点】勾股定理.【分析】由勾股定理求出BC,再根据圆的面积公式即可得出结果.【解答】解:∵AC=6,AB=10,∠ACB=90°,∴BC===8,∴阴影部分的面积=×π×()2=×π×42=8π;故答案为:8π.【点评】本题考查了勾股定理、圆的面积公式;熟练掌握勾股定理,由勾股定理求出半圆的直径是解决问题的关键.11.从知识结构来看,平行四边形、矩形、菱形、正方形的包含关系可以如图表示,则其中最大的椭圆表示的是平行四边形,阴影部分表示的是正方形.【考点】多边形.【分析】根据正方形、平行四边形、菱形和矩形的定义或性质逐个进行分析,即可得出答案.【解答】解:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即有是一个角为直角的菱形;正方形、矩形和菱形都是特殊的平行四边形,故答案为:平行四边,正方.【点评】此题主要考查学生对正方形、平行四边形、菱形和矩形的包含关系的理解和掌握,解答此题的关键是熟练掌握这四种图形的性质.12.某中学对八年级学生进行了一次数学测试,甲、乙两班的平均分和方差分别为=79,=79,S甲2=201,S乙2=235,则成绩较整齐是甲(填甲或乙)班.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵为=79,=79,S甲2=201,S乙2=235,∴S甲2<S乙2,∴成绩较整齐是甲;故答案为:甲.【点评】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.已知一次函数y=kx+b的图象过点(0,1),且y随x增大而增大,请你写出一个符合这个条件的一次函数关系式y=x+1.【考点】一次函数的性质.【专题】开放型.【分析】由于所求一次函数y随着x的增大而增大,所以其k>0,由图象经过点(0,1),所以答案不唯一,只要满足这两个条件即可.【解答】解:∵一次函数y随着x的增大而增大,经过点(0,1),∴符合的一次函数关系式为:y=x+1(答案不唯一),故答案为:y=x+1.【点评】此题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.此题的答案不唯一,是开放性试题.14.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为3.