2015-2016学年山西省太原市八年级(下)期末数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)1.若分式无意义,则x的值为()A.x=﹣1B.x=1C.x=1D.x=22.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.等腰梯形C.正方形D.平行四边形3.一个不等式组中两个不等式的解集在同一数轴上的表示如图所示,这个不等式组的解集为()A.x<﹣1B.x≤1C.﹣1<x≤1D.x≥14.如图,将三角尺ABC的一边AC沿位置固定的直尺推移得到△DEF,下列结论不一定正确的是()A.DE∥ABB.四边形ABED是平行四边形C.AD∥BED.AD=AB5.如图,平行四边形ABCD中,对角线AC与BD相交于点O,且AC⊥AB,垂足为点A,若AB=4,AC=6,则BD的长为()A.5B.8C.10D.126.如图,∠1,∠2,∠3,∠4,∠5分别是五边形ABCDE个顶点处的一个外角,则∠1+∠2+∠3+∠4+∠5的度数是()A.90°B.180°C.270°D.360°7.下列各式从左向右的变形正确的是()A.=B.=C.=D.=8.如图,△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC,垂足为点E,若∠BAD=15°,则∠CBE的度数为()A.15°B.30°C.45°D.60°9.如图,小明用四张长方形或正方形纸片拼成一个大长方形,小亮根据小明的拼图过程,写出多项式x2+3x+2因式分解的结果为(x+1)(x+2),这个解题过程体现的数学思想主要是()A.分类讨论B.数形结合C.公理化D.演绎10.利用一次函数y=ax+b的图象解关于x的不等式ax+b<0,若它的解集是x>﹣2,则一次函数y=ax+b的图象为()A.B.C.D.二、填空题(本大题含6个小题,每题3分,共18分)把答案填在题中横线上11.多项式x2﹣6x+9因式分解的结果为______.12.如图,△ABC是等边三角形,AB=6,若点D与点E分别是AB,AC的中点,则DE的长等于______.13.不等式组的最大整数解为______.14.如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是______.(只写出一种情况即可)15.在一项居民住房节能改造工程中,某社区计划用a天完成建筑面积为1000平方米的居民住房节能改造任务,若实际比计划提前b天完成改造任务,则代数式“”表示的意义为______.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是______.三、解答题(本大题含8个小题,共52分)解答应写出必要的文字说明、演算步骤和推理过程.17.因式分解:(1)2x2﹣2(2)xy(x﹣y)+y(x﹣y)2.18.先化简,在求值:÷﹣,其中a=﹣3.19.解分式方程:20.已知:如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为点E,点F.(1)求证:BE=DF.(2)求证:四边形AECF是平行四边形.21.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段,求作线段的垂直平分线.ABAB小明的作法如下:同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC,BC,AD,BD由作图可知:,AC=BC,AD=BD∴点C,点D在线段的垂直平分线上(依据1:______)∴直线就是线段的垂直平分线(依据2:______)(1)请你将小明证明的依据写在横线上;(2)将小明所作图形放在如图的正方形网格汇总,点A,B,C,D恰好均在格点上,依次连接A,C,B,D,A各点,得到如图所示的“箭头状”的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.22.开学初,学校要补充部分体育器材,从超市购买了一些排球和篮球.其中购买排球的总价为1000元,购买篮球的总价为1600元,且购买篮球的数量是购买排球数量的2倍.已知购买一个排球比一个篮球贵20元.(1)求购买排球和篮球的单价各是多少元;(2)为响应“足球进校园”的号召,学校计划再购买50个足球.恰逢另一超市对A、B两种品牌的足球进行降价促销,销售方案如表所示.如果学校此次购买A、B两种品牌足球的总费用不超过5000元.那么最多可购买多少个品牌足球?种类标价优惠方案A品牌足球150元/个八折B品牌足球100元/个九折23.课堂上,小明与同学们讨论下面五边形中的问题:如图1,在五边形中ABCDE,AB=BC=CD,∠ABC=∠BCD=120°,∠EAB=∠EDC,小明发现图1中AE=DE;小亮在图1中连接AD后,得到图3,发现AD=2BC.请在下面的、两题中任选一题解答.A:为证明AE=DE,小明延长EA,ED分别交直线BC与点M、点N,如图2.请利用小明所引的辅助线证明AE=DE=B:请你借助图3证明AD=2BC我选择______题.24.如图1,已知∠MON=90°,点A、B分别是∠MON的边OM,ON上的点.且OA=OB=1,将线段OA绕点O顺时针旋转α(0°<α<180°)得到线段OC,∠AOC的角平分线OP与直线BC相交于点P,点D是线段BC的中点,连接OD.(1)若α=30°,如图2,∠P的度数为______°;(2)若0°<α<90°,如图1,求∠P的度数;(3)在下面的A、B两题中任选一题解答.A:在(2)的条件下,在图1中连接PA,求PA2+PB2的值.B:如图3,若90°<α<180°,其余条件都不变.请在图3中画出相应的图形,探究下列问题:①直接写出此时∠P的度数;②求此时PC2+PB2的值.我选择______题.2015-2016学年山西省太原市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题含10个小题,每小题3分,共30分)1.若分式无意义,则x的值为()A.x=﹣1B.x=1C.x=1D.x=2【考点】分式有意义的条件.【分析】根据分式无意义的条件,说明分母x﹣2=0,解得x的值即可.【解答】解:依题意得x﹣2=0,解得x=2.故选D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.等腰梯形C.正方形D.平行四边形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念,即可求解.【解答】解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选C.3.一个不等式组中两个不等式的解集在同一数轴上的表示如图所示,这个不等式组的解集为()A.x<﹣1B.x≤1C.﹣1<x≤1D.x≥1【考点】在数轴上表示不等式的解集.【分析】本题可根据数轴的性质,实心圆点包括该点用“≥”,“≤”表示,空心圆圈不包括该点用“<”,“>”表示,大于向右,小于向左.观察相交的部分即为不等式的解集.【解答】解:数轴上表示解集的线的条数与不等式的个数一样的部分是﹣1左边的部分,则不等式解集为:x<﹣1.故选A.4.如图,将三角尺ABC的一边AC沿位置固定的直尺推移得到△DEF,下列结论不一定正确的是()A.DE∥ABB.四边形ABED是平行四边形C.AD∥BED.AD=AB【考点】平移的性质;平行四边形的判定.【分析】由平移性质可得AD∥BE,且AD=BE,即可知四边形ABED是平行四边形,再根据平行四边形性质可得DE∥AB,从而可得答案.【解答】解:由平移性质可得AD∥BE,且AD=BE,∴四边形ABED是平行四边形,∴DE∥AB,故A、B、C均正确,故选:D.5.如图,平行四边形ABCD中,对角线AC与BD相交于点O,且AC⊥AB,垂足为点A,若AB=4,AC=6,则BD的长为()A.5B.8C.10D.12【考点】平行四边形的性质.【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO=AC=3,∵AB⊥AC,AB=4,∴BO==5,∴BD=2BO=10,故选:C.6.如图,∠1,∠2,∠3,∠4,∠5分别是五边形ABCDE个顶点处的一个外角,则∠1+∠2+∠3+∠4+∠5的度数是()A.90°B.180°C.270°D.360°【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可求解.【解答】解:根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°.故选:D.7.下列各式从左向右的变形正确的是()A.=B.=C.=D.=【考点】分式的基本性质.【分析】分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,据此判断即可.【解答】解:(A)分子、分母都减去2,分式的值改变,故(A)错误;(B)分子、分母都乘上﹣2,分式的值不变,故(B)正确;(C)分子、分母都加上2,分式的值改变,故(C)错误;(D)分子、分母都平方,分式的值改变,故(D)错误.故选:(B)8.如图,△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC,垂足为点E,若∠BAD=15°,则∠CBE的度数为()A.15°B.30°C.45°D.60°【考点】等腰三角形的性质.【分析】根据三角形三线合一的性质可得∠CAD=∠BAD,根据同角的余角相等可得:∠CBE=∠CAD,再根据等量关系得到∠CBE=∠BAD=15°.【解答】证明:∵AB=AC,AD是BC边上的中线,∴∠CAD=∠BAD=15°,AD⊥BC,∵BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∴∠CBE=∠CAD=15°,∴∠CBE=∠BAD=15°.故选A.9.如图,小明用四张长方形或正方形纸片拼成一个大长方形,小亮根据小明的拼图过程,写出多项式x2+3x+2因式分解的结果为(x+1)(x+2),这个解题过程体现的数学思想主要是()A.分类讨论B.数形结合C.公理化D.演绎【考点】因式分解的应用.【分析】根据图形,可知长方形面积有两种表达方式,依此得出多项式x2+3x+2因式分解的结果为(x+1)(x+2),这个解题过程体现的数学思想主要是数形结合.【解答】解:小明用四张长方形或正方形纸片拼成一个大长方形,小亮根据小明的拼图过程,写出多项式x2+3x+2因式分解的结果为(x+1)(x+2),这个解题过程体现的数学思想主要是数形结合.故选B.10.利用一次函数y=ax+b的图象解关于x的不等式ax+b<0,若它的解集是x>﹣2,则一次函数y=ax+b的图象为()A.B.C.D.【考点】一次函数与一元一次不等式;一次函数的图象.【分析】根据不等式ax+b<0的解集是x>﹣2即可得出结论.【解答】解:∵不等式ax+b<0的解集是x>﹣2,∴当x>﹣2时,函数y=ax+b的图象在x轴下方.故选A.二、填空题(本大题含6个小题,每题3分,共18分)把答案填在题中横线上11.多项式x2﹣6x+9因式分解的结果为(x﹣3)2.【考点】因式分解-运用公式法.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣3)2,故答案为:(x﹣3)212.如图,△ABC是等边三角形,AB=6,若点D与点E分别是AB,AC的中点,则DE的长等于3.【考点】等边三角形的性质.【分析】直接利用等边三角形的性质得出BC的长,再利用三角形中位线的性质得出答案.【解答】解:∵△ABC是等边三角形,AB=6,∴BC=6,∵点D与点E分别是AB,AC的中点,∴DE=BC=3.故答案为:3.13.不等式组的最大整数解为2.【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集,即可求得该不等式组的最大整数解.【解答】解:由①得,x≤2,由②得,x>﹣2.所以不等式组的解集为﹣2<x≤2,该不等式组的最大整数解为2.故答案为2.14.如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是AD=BC.(只写出一种情况即可)【考点】平行四边形的判定.【分析】