2015-2016学年山东省泰安市泰山八年级(上)第一次月考数学试卷一、选择题1.下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为(A.48°B.54°C.74°D.78°3.下列命题中:1)两个全等三角形合在一起是一个轴对称图形;2)等腰三角形的对称轴是底边上的中线;3)等边三角形一边上的高就是这边的垂直平分线;4)一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形.正确的说法有()A.1个B.2个C.3个D.4个4.如图所示,四个三角形,能构成全等三角形的是()A.②和③B.②和④C.①和②D.③和④5.如图,AB=AD,BC=CD,点E在AC上,则全等三角形共有()A.1对B.2对C.3对D.4对6.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABCB.△BCD的周长等于AB+BCC.AD=BD=BCD.点D是线段AC的中点7.如图:在△ABC中,AD是∠BAC的平分线,DE⊥AC于E,DF⊥AB于F,且FB=CE,则下列结论:①DE=DF,②AE=AF,③BD=CD,④AD⊥BC.其中正确的个数有()A.1个B.2个C.3个D.4个8.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°9.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°10.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC11.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧12.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cmB.4cmC.10cmD.以上都不对13.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4B.3C.2D.114.∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5B.PQ≥5C.PQ<5D.PQ≤515.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A.3cm或5cmB.3cm或7cmC.3cmD.5cm二、填空题16.如图,AB=AC,BD=CD,若∠B=28°,则∠C=.17.如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是;(填序号)18.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).19.如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.20.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.21.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=.22.已知点P关于x轴的对称点P′的坐标是(2,3),那么P关于y轴对称点P″的坐标是.23.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为.三、解答题(共51分)24.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?25.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.26.△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,∠AQN等于多少度?27.如图,在△ABC中,CE、CF分别平分∠ACB和△ACB的外角∠ACG,EF∥BC交AC于点D,求证:DE=DF.28.如图,AD∥BC,∠DAB的平分线与∠CBA的平分线交于点P,过点P的直线垂直于AD,垂足为D,交BC于点C.试问:点P是线段CD的中点吗?为什么?29.已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.求证:(1)AE=CF;(2)AF∥CE.30.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.2015-2016学年山东省泰安市泰山八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1.下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.【解答】解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为(A.48°B.54°C.74°D.78°【考点】轴对称的性质.【分析】根据轴对称的性质可得∠C=∠C′,再利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=48°,在△ABC中,∠B=180°﹣∠A﹣∠C=180°﹣78°﹣48°=54°.故选B.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.3.下列命题中:1)两个全等三角形合在一起是一个轴对称图形;2)等腰三角形的对称轴是底边上的中线;3)等边三角形一边上的高就是这边的垂直平分线;4)一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形.正确的说法有()A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】根据题轴对称的性质,对题中条件进行一一分析,排除错误答案.【解答】解:(1)两个全等三角形合在一起是一个轴对称图形,由于位置关系不确定,不能正确判定,错误;(2)等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误;(3)等边三角形一边上的高就是这边的垂直平分线,应该改为高所在的直线,故错误;(4)一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形,符合轴对称性质,正确.故选A.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.4.如图所示,四个三角形,能构成全等三角形的是()A.②和③B.②和④C.①和②D.③和④【考点】全等三角形的判定.【分析】先根据三角形内角和定理得到一个内角的度数,再根据ASA可证2个三角形全等,依此即可求解.【解答】解:①180°﹣60°﹣60°=60°,②180°﹣70°﹣60°=50°,③180°﹣70°﹣50°=60°,④180°﹣60°﹣70°=50°,根据ASA可证2个三角形全等是③和④.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,AB=AD,BC=CD,点E在AC上,则全等三角形共有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】根据AB=AD,BC=CD,以及AC=AC,可证明△ABC≌△ADC,则∠ACB=∠ACD,可证明△BCE≌△DCE,则BE=DE,从而得出△ABE≌△ADE.【解答】解:∵AB=AD,BC=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠ACB=∠ACD,∴△BCE≌△DCE(SAS),∴BE=DE,∴△ABE≌△ADE(SSS).∴全等三角形共有3对.故选C.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABCB.△BCD的周长等于AB+BCC.AD=BD=BCD.点D是线段AC的中点【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC;可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,求得AD=BD=BC,则可求得答案;注意排除法在解选择题中的应用.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故C正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故D错误.故选D.【点评】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.7.如图:在△ABC中,AD是∠BAC的平分线,DE⊥AC于E,DF⊥AB于F,且FB=CE,则下列结论:①DE=DF,②AE=AF,③BD=CD,④AD⊥BC.其中正确的个数有()A.1个B.2个C.3个D.4个【考点】角平分线的性质;全等三角形的判定与性质;勾股定理.【分析】根据角平分线性质求出DF=DE即可;根据勾股定理和DE=DF即可求出AE=AF;求出AB=AC,根据等腰三角形的三线合一定理即可判断③④正确.【解答】解:∵AD平分∠BAC,DE⊥AC,DF⊥AB,∴DE=DF,∴①正确;由勾股定理得:AF=,AE=,∵AD=AD,DF=DE,∴AE=AF,∴②正确;∵AF=AE,BF=CE,∴AB=AC,∵AD平分∠BAC,∴BD=DC,AD⊥BC,∴③④都正确;∴正确的有4个.故选D.【点评】本题考查了勾股定理,角平分线性质和等腰三角形的性质等的应用,关键是熟练地运用定理进行推理,题目比较典型,难度不大.8.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【分析】根据折叠