腾冲市十五校联考2016届九年级上期末考试数学试题含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年云南省保山市腾冲市十五校联考九年级(上)期末数学试卷一、选一选(本大题共10小题,每小题3分,共30分)1.二次函数y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)2.判断一元二次方程x2﹣2x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19B.(x﹣2)2=7C.(x+2)2=7D.(x+4)2=194.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121B.100(1﹣x)=121C.100(1+x)2=121D.100(1﹣x)2=1215.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.6.已知:点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定7.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只8.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.120°B.140°C.150°D.160°10.如图,在平行四边形ABCD中,点E是边AD的中点,连接EC交对角线BD于点F,则S△DEF:S△BCF等于()A.1:2B.1:4C.1:9D.4:9二、填一填(本大题共8个小题,每小题3分,共24分)11.已知反比例函数y=(k是常数,且k≠0)的图象在第二、四象限,请写出一个符合条件的反比例函数表达式__________.12.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为__________(结果保留π)13.方程x2﹣3x=0的根为__________.14.如图,A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,AC垂直于y轴,垂足为C,若矩形ABOC的面积为7,则k的值为__________.15.已知x=﹣1是关于x的一元二次方程x2﹣mx﹣2=0的一个解,则m的值是__________.16.布袋中装有2个白球,4个黑球,它们除颜色外其余均相同,则随机地从袋中摸出一个球是白球的概率是__________.17.已知Rt△ABC的两直角边的长分别为6cm和8cm,则它的外接圆的半径为__________cm.18.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为__________米.三、解答题(本题共7个大题,共66分)19.如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.20.如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为__________;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为__________;(3)在(2)中的旋转过程中,线段OA扫过的图形的面积__________.21.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.22.在一个不透明的盒子中,装有三张卡片,卡片上分别标有数字“1”,“2”和“3”,它们除了数字不同外,其余都相同.(1)随机地从盒中抽出一张卡片,则抽出数字为“2”的卡片的概率是多少?(2)若第一次从这三张卡片中随机抽取一张,设记下的数字为x,此卡片不放回盒中,第二次再从余下的两张卡片中随机抽取一张,设记下的数字为y,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出x+y<4的概率.23.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?24.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.25.已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.2015-2016学年云南省保山市腾冲市十五校联考九年级(上)期末数学试卷一、选一选(本大题共10小题,每小题3分,共30分)1.二次函数y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【考点】二次函数的性质.【分析】已知解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为y=(x﹣1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(1,﹣2).故选C.【点评】本题考查通过抛物线的顶点坐标式写出抛物线的顶点坐标,比较容易.2.判断一元二次方程x2﹣2x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【考点】根的判别式.【分析】先计算出△=(﹣2)2﹣4×1×1=0,然后根据△的意义进行判断方程根的情况.【解答】解:∵△=(﹣2)2﹣4×1×1=0,∴方程有两个相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19B.(x﹣2)2=7C.(x+2)2=7D.(x+4)2=19【考点】解一元二次方程-配方法.【分析】移项,再配方,即可得出答案.【解答】解:x2﹣4x﹣3=0,x2﹣4x=3,x2﹣4x+4=3+4,(x﹣2)2=7,故选B.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方,难度适中.4.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121B.100(1﹣x)=121C.100(1+x)2=121D.100(1﹣x)2=121【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为121元,列出关于x的方程.【解答】解:设平均每次提价的百分率为x,根据题意得:100(1+x)2=121,故选C.【点评】此题考查了一元二次方程的应用,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.5.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【解答】解:已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.【点评】此题考查三角形相似判定定理的应用.6.已知:点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】对y=﹣,由x1<0<x2<x3知,A点位于第二象限,y1最大,第四象限,y随x增大而增大,y2<y3,故y2<y3<y1.【解答】解:∵y=﹣中k=﹣3<0,∴此函数的图象在二、四象限,∵点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3,∴A点位于第二象限,y1>0,B、C两点位于第四象限,∵0<x2<x3,∴y2<y3,∴y2<y3<y1.故选B.【点评】本题考查了反比例函数图象上点的坐标特征,要学会比较图象上点的坐标.7.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只【考点】用样本估计总体.【分析】根据先捕捉40只黄羊,发现其中2只有标志.说明有标记的占到,而有标记的共有20只,根据所占比例解得.【解答】解:20÷=400(只).故选B.【点评】此题考查了用样本估计总体;统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.8.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.【解答】解:设底面圆的半径为r,则:2πr==π.∴r=,∴圆锥的底面周长为,故选:B.【点评】本题考查的是弧长的计算,利用弧长公式求出弧长,然后根据扇形弧长与圆锥底面半径的关系求出底面圆的半径.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.120°B.140°C.150°D.160°【考点】圆周角定理;垂径定理.【分析】利用垂径定理得出==,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:B.【点评】本题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,在平行四边形ABCD中,点E是边AD的中点,连接EC交对角线BD于点F,则S△DEF:S△BCF等于()A.1:2B.1:4C.1:9D.4:9【考点】平行四边形的性质;相似三

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功