天津市滨海新区2017-2018学年八年级下期末考试数学试题含答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2017-2018学年天津市滨海新区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列各组线段a、b、c中,能组成直角三角形的是()A.a=4,b=5,c=6B.a=1,b=,c=2C.a=1,b=1,c=3D.a=5,b=12,c=123.下列各式中,y不是x的函数的是()A.y=|x|B.y=xC.y=﹣x+1D.y=±x4.用配方法解方程x2﹣4x﹣2=0变形后为()A.(x﹣4)2=6B.(x﹣2)2=6C.(x﹣2)2=2D.(x+2)2=65.一次函数y=x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.一元二次方程x2﹣8x+20=0的根的情况是()A.没有实数根B.有两个相等的实数根C.只有一个实数根D.有两个不相等的实数根7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A.y1<y2B.y1>y2C.y1=y2D.不能确定8.菱形的两条对角线长分别为6和8,则菱形的面积是()A.10B.20C.24D.489.已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()A.y<﹣4B.﹣4<y<0C.y<0D.y<210.如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.1011.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价()A.5元B.10元C.20元D.10元或20元12.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)13.若在实数范围内有意义,则x的取值范围为.14.将直线y=﹣2x+4向下平移5个单位长度,平移后直线的解析式为.15.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.三、解答题(本大题共7小题,共66分.解笞应写出文字说明、演算步骤或推演过程)19.(8分)计算下列各题:(Ⅰ)+×;(Ⅱ)(+)(﹣)﹣(+)2.20.(8分)解下列方程:(Ⅰ)x2+3=2x(Ⅱ)x(x﹣2)+x﹣2=0.21.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=;(Ⅱ)CD的长=;(Ⅲ)求CM的长.22.(10分)在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.23.(10分)某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件3070x购买A种奖品的费用/元300购买B种奖品的费用/元450(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?24.(10分)如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.25.(10分)在平面直角坐标系中,直线l1:y=﹣x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功