2016-2017年八年级数学上册周练习题12.16题号一二三四五总分得分一、选择题(本大题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一根长竹签切成四段,分别为3cm、5cm、7cm、9cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有()A.1个B.2个C.3个D.4个2.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC4.下列计算正确的是()A.a6÷a2=a3B.a2+a2=2a4C.(a﹣b)2=a2﹣b2D.(a2)3=a65.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y﹣x)6.下列分式是最简分式的是()A.B.C.D.7.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=8.若n75是整数,则正整数n的最小值是()A.2B.3C.4D.59.化简aa1的结果是()A.B.C.-D.-10.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题3分,共18分)11.代数式在实数范围内有意义,则x的取值范围是.12.计算:(x+1)2﹣(x+2)(x﹣2)=.13.如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC与B′C′边上的高.(只需填写一个你认为适当的条件)14.三角形两外角平分线和第三个角的内角平分线一点,且该点在三角形部.15.方程的解是.16.如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.三、计算题(本大题共10小题,共40分)17.(x+1)2﹣(x+2)(x﹣2).18.(ab2)2•(﹣a3b)3÷(﹣5ab);19.因式分解:9a2(x﹣y)+4b2(y﹣x).20.因式分解:3x﹣12x3;21.因式分解:22.23.在实数范围内分解下列因式:(1)(2)(3)24.25.计算:(1)(2)(+)+(-)四、解答题(本大题共4小题,共24分)26.若,,试比较,的大小。27.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.试说明AD+AB=BE.28.已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.29.在三个整式中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解30.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?五、综合题(本大题共1小题,共8分)31.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB有怎样的数量关系,并直接写出结论(不需要证明)答案1.D2.B3.C4.D5.B6.C.7.B.8.B9.A10.D.11.答案为:x≠312.答案为:2x+5.13.添加∠C=∠C´,可以利用AAS判定其全等;还可添加AC=A′C′,∠CAD=∠C′A′D′等.14.解答】解:如图:AP与CP是△ABC两外角平分线,过点P作PE⊥AB于E,作PD⊥BC于D,PF⊥AC于F,∴PE=PF,PF=PD,∴PE=PD,∴PB是△ABC第三个角∠ABC的内角平分线.∴三角形两外角平分线和第三个角的内角平分线相交于一点,且该点在三角形外部.故答案为:相交于,外.15.【解答】解:方程的两边同乘x(x+2),得2x=x+2,解得x=2.检验:把x=2代入x(x+2)=8≠0.∴原方程的解为:x=2.故答案为:x=2.16.【解答】解:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=21AE=4,∴AE=8.故答案为:8.17.原式=x2+2x+1﹣x2+4=2x+5.18.原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;19.9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)•(3a﹣2b).20.3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);21.=22.略23.解:(1)(2)(3)24.略25.解:(1)=0;(2)(+)+(-)=++-=4+2+2-=6+.26.解:所以27.【解答】解:∵∠DCE=90°(已知),∴∠ECB+∠ACD=90°,∵EB⊥AC,∴∠E+∠ECB=90°(直角三角形两锐角互余).∴∠ACD=∠E(同角的余角相等).∵AD⊥AC,BE⊥AC(已知),∴∠A=∠EBC=90°(垂直的定义)在Rt△ACD和Rt△BEC中,,∴Rt△ACD≌Rt△BEC(AAS).∴AD=BC,AC=BE(全等三角形的对应边相等),∴AD+AB=BC+AB=AC.∴AD+AB=BE.28.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.29.解:或或或30.【解答】解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.31.【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.