潍坊市诸城市2015-2016学年八年级上期末数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年山东省潍坊市诸城市八年级(上)期末数学试卷一、选择题1.下列大学的校徽图案是轴对称图形的是()A.浙江大学B.北京大学C.中国人民大学D.清华大学2.下列七个数中:0,32,(﹣5)2,﹣4,9,π,3﹣2,有平方根的数的个数是()A.3B.4C.5D.63.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5B.96,95C.95,94.5D.95,954.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°5.如图,四边形ABCD中,AC垂直平分BD,垂足为E,则图中全等三角形共有()A.1对B.2对C.3对D.4对6.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.287.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°8.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称9.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形10.若△ABC中,AB=25cm,AC=26cm,BC边上的高AD=24cm,则BC的长为()A.17cmB.3cmC.17cm或3cmD.以上都不对二、填空题11.计算:﹣=______.12.的相反数是______,绝对值是______.13.有5个从小到大排列的正整数,其中位数是3,唯一的众数是7,则这5个数的平均数是______.14.△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=115°,则∠EAF=______度.15.如果一个等腰三角形的一个外角等于40°,则该等腰三角形的底角的度数是______.16.在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有______个.三、解答题(共8小题,满分72分)17.计算或化简:(1)×﹣÷;(2)÷(1﹣)18.如图,已知OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.求证:(1)PO平分∠APB;(2)OP是AB的垂直平分线.19.已知:如图,AB∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE.20.如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M;(不写作法,保留作图痕迹)(2)求证:BM=EM.21.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为______cm.22.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.23.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?24.如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.2015-2016学年山东省潍坊市诸城市八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列大学的校徽图案是轴对称图形的是()A.浙江大学B.北京大学C.中国人民大学D.清华大学【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选:B.2.下列七个数中:0,32,(﹣5)2,﹣4,9,π,3﹣2,有平方根的数的个数是()A.3B.4C.5D.6【考点】平方根;负整数指数幂.【分析】先把各数化简.在根据正数和0有平方根,即可解答.【解答】解:(﹣5)2=25,,有平方根的数是:0,32,(﹣5)2,9,π,3﹣2,共6个,故选:D.3.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5B.96,95C.95,94.5D.95,95【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.5.如图,四边形ABCD中,AC垂直平分BD,垂足为E,则图中全等三角形共有()A.1对B.2对C.3对D.4对【考点】线段垂直平分线的性质;全等三角形的判定.【分析】首先证明利用SSS定理证明△ABC≌△ADC可得∠BAC=∠DAC,再证明△ABF≌△ADF可得BF=DF,最后证明△BCF≌△DCF.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=DC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABF和△ADF中,,∴△ABF≌△ADF(SAS),∴BF=DF,△CBF和△CDF中,,∴△BCF≌△DCF(SSS).故选:C.6.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.7.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°【考点】等腰三角形的性质.【分析】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选A.8.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称【考点】作图—基本作图;全等三角形的判定与性质;角平分线的性质.【分析】连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.【解答】解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选:D.9.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.【解答】解:∵(a﹣3)2≥0,+≥0,|c﹣5|≥0,∴a﹣3=0,b﹣4=0,c﹣5=0,解得:a=3,b=4,c=5,∵32+42=9+16=25=52,∴以a,b,c为边的三角形是直角三角形.故选D.10.若△ABC中,AB=25cm,AC=26cm,BC边上的高AD=24cm,则BC的长为()A.17cmB.3cmC.17cm或3cmD.以上都不对【考点】勾股定理.【分析】分两种情况考虑:在直角三角形ACD与直角三角形ABD中,分别利用勾股定理求出CD与BD的长,由CD+DB及CD﹣BC分别求出BC的长即可.【解答】解:如图1,在Rt△ACD中,AC=26cm,AD=24cm,根据勾股定理得:CD==10cm,在Rt△ABD中,AB=25cm,AD=24cm,根据勾股定理得:BD==7cm,此时BC=BD+DC=17cm;如图2,在Rt△ACD中,AC=26cm,AD=24cm,根据勾股定理得:CD==10cm,在Rt△ABD中,AB=25cm,AD=24cm,根据勾股定理得:BD==7cm,此时BC=DC﹣BC=3cm,综上,BC的长为17cm或3cm.故选:C二、填空题11.计算:﹣=.【考点】分式的加减法.【分析】为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣==,故答案为:.12.的相反数是﹣2,绝对值是﹣2.【考点】实数的性质.【分析】根据只有符号不同的两数叫做互为相反数解答;根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2,绝对值是﹣2.故答案为:﹣2;﹣2.13.有5个从小到大排列的正整数,其中位数是3,唯一的众数是7,则这5个数的平均数是4.

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功