2015-2016学年安徽省芜湖市弋江、工山片九年级(上)期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分,请把正确的选项填在答题卡的相应位置上)1.已知=,则x的值是()A.B.C.D.2.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0B.m<0C.m>3D.m<33.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×1055.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A.B.C.D.6.⊙O的半径r=5cm,圆心到直线l的距离OM=4cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内7.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.8.如图,△ABC中,∠A=90°,∠C=30°,BC=12cm,把△ABC绕着它的斜边中点P逆时针旋转90°至△DEF的位置,DF交BC于点H.△ABC与△DEF重叠部分的面积为()cm2.A.8B.9C.10D.129.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A.B.C.D.10.如图,E,F分别是平行四边形ABCD的边AB,DC上的点,AF与DE相交于点P,FB与EC相交于点B,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为()A.10cm2B.20cm2C.30cm2D.40cm2二、填空题(本题有4小题,每小题5分,共20分)11.扇形的半径为9,且圆心角为120°,则它的弧长为__________.12.若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是__________.13.如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦与小半圆N相切于点F,且AB∥CD,AB=4,设、的长分别为x、y,线段ED的长为z,则z(x+y)的值为__________.14.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(3,y2)是抛物线上两点,则y1>y2,其中正确的序号是__________.三、解答题(本题共有7个小题,共90分)15.解方程:(1)(5x﹣1)(x+1)=2x+3(2)(3x﹣1)2=(x+1)2.16.先化简,再求值:,其中x的值是不等式组的整数解.17.观察下列算式:①1×3﹣22=﹣1;②2×4﹣32=﹣1;③3×5﹣42=﹣1;④__________;(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为第(2)小题中所写出的式子一定成立吗?并说明理由.18.在一个口袋里有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取的摸取方法分别是:小明:随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机摸取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.19.如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少?21.如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.22.如图,y关于x的二次函数y=﹣(x+m)(x﹣3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(﹣3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;(2)当m为何值时M点在直线ED上?判定此时直线与圆的位置关系;(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的函数图象的示意图.23.(14分)我们规定:函数y=(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=的图象经过点B、E,求该奇特函数的表达式;(3)把反比例函数y=的图象向右平移4个单位,再向上平移__________个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2015-2016学年安徽省芜湖市弋江、工山片九年级(上)期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分,请把正确的选项填在答题卡的相应位置上)1.已知=,则x的值是()A.B.C.D.【考点】比例的性质.【专题】计算题.【分析】根据内项之积等于外项之积得到2x=15,然后解一次方程即可.【解答】解:∵=,∴2x=15,∴x=.故选B.【点评】本题是基础题,考查了比例的基本性质,比较简单.2.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0B.m<0C.m>3D.m<3【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的性质可得m﹣3>0,解不等式即可确定答案.【解答】解:∵一次函数y=(m﹣3)x+5中,y随着x的增大而增大,∴m﹣3>0,解得:m>3.故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×105【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6090000用科学记数法表示为:6.09×106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列表将所有等可能的结果列举出来利用概率公式求解即可.【解答】解:列表得:根据题意分析可得:共6种情况;为奇数的2种.故P(奇数)==.【点评】此题考查的是列表法与树状图法.用到的知识点为:概率=所求情况数与总情况数之比.6.⊙O的半径r=5cm,圆心到直线l的距离OM=4cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内【考点】点与圆的位置关系.【分析】由条件计算出OP的长度与半径比较大小即可.【解答】解:由题意可知△OPM为直角三角形,且PM=3,OM=4,由勾股定理可求得OP=5=r,故点P在⊙O上,故选B.【点评】本题主要考查点和圆的位置关系的判定,只要计算出P点到圆心的距离再与半径比较大小即可.7.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【专题】压轴题;数形结合.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.8.如图,△ABC中,∠A=90°,∠C=30°,BC=12cm,把△ABC绕着它的斜边中点P逆时针旋转90°至△DEF的位置,DF交BC于点H.△ABC与△DEF重叠部分的面积为()cm2.A.8B.9C.10D.12【考点】旋转的性质.【分析】如图,由点P为斜边BC的中点得到PC=BC=6,再根据旋转的性质得PF=PC=6,∠FPC=90°,∠F=∠C=30°,根据含30度的直角三角形三边的关系,在Rt△PFH中计算出PH=PF=2;在Rt△CPM中计算出PM=PC=2,且∠PMC=60°,则∠FMN=∠PMC=60°,于是有∠FNM=90°,FM=PF﹣PM=6﹣2,则在Rt△FMN中可计算出MN=FM=3﹣,FN=MN=3﹣3,然后根据三角形面积公式和利用△ABC与△DEF重叠部分的面积=S△FPH﹣S△FMN进行计算即可.【解答】解:如图,∵点P为斜边BC的中点,∴PB=PC=BC=6,∵△ABC绕着它的斜边中点P逆时针旋转90°至△DEF的位置,∴PF=PC=6,∠FPC=90°,∠F=∠C=30°,在Rt△PFH中,∵∠F=30°,∴PH=PF=×6=2,在Rt△CPM中,∵∠C=30°,∴PM=PC=×6=2,∠PMC=60°,∴∠FMN=∠PMC=60°,∴∠FNM=90°,而FM=PF﹣PM=6﹣2,在Rt△FMN中,∵∠F=30°,∴MN=FM=3﹣,∴FN=MN=3﹣