2015-2016学年湖北省武汉市黄陂区八年级(上)期中数学复习试卷(二)一、选择题(共10小题,每小题3分,共30分)1.下列图形不是轴对称图形的是()A.B.C.D.2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.163.已知am=5,an=6,则am+n的值为()A.11B.30C.D.4.下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a65.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SASB.ASAC.SSSD.AAS6.计算(x+3y)2﹣(3x+y)2的结果是()A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)27.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.288.计算(﹣2x+1)(﹣3x2)的结果为()A.6x3+1B.6x3﹣3C.6x3﹣3x2D.6x3+3x29.分解因式:x2﹣4y2的结果是()A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)210.如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是()A.①②③B.、①C.、②D.、③二、填空题(共6小题,每小题3分,共18分)11.计算:20130﹣2﹣1=.12.化简的结果是.13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.15.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.三、解答题(共8题,共72分)17.计算:(1)(3a﹣2b)(9a+6b);(2)(﹣2m﹣1)2.18.分解因式:4a2﹣9b2.19.解分式方程=.20.已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE的长.21.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)由图观察易知点A(0,2)关于直线l的对称点A′坐标为(2,0),请在图中分别标明点B(5,3),C(﹣2,﹣5)关于直线l的对称点B′,C′的位置,并写出它们的坐标:B′、C′;(2)结合图形观察以上三组点的坐标,你发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′坐标为.22.2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?2015-2016学年湖北省武汉市黄陂区八年级(上)期中数学复习试卷(二)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列图形不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故选项错误;B、不是轴对称图形,故选项正确;C、是轴对称图形,故选项错误;D、是轴对称图形,故选项错误.故选:B.2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【考点】三角形三边关系.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.3.已知am=5,an=6,则am+n的值为()A.11B.30C.D.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.【解答】解:am+n=am×an=30.故选B.4.下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】直接利用积的乘方、同底数幂的乘法、合并同类项以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、(﹣2x)3=﹣8x3,故本选项错误;B、﹣a2•a=﹣a3,故本选项正确;C、(﹣x)9+(﹣x)9=﹣x9+(﹣x9)=﹣2x9,故本选项正确;D、(﹣2a3)2=4a6,故本选项正确.故选A.5.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SASB.ASAC.SSSD.AAS【考点】全等三角形的应用.【分析】由O是AA′、BB′的中点,可得AO=A′O,BO=B′O,再有∠AOA′=∠BOB′,可以根据全等三角形的判定方法SAS,判定△OAB≌△OA′B′.【解答】解:∵O是AA′、BB′的中点,∴AO=A′O,BO=B′O,在△OAB和△OA′B′中,∴△OAB≌△OA′B′(SAS),故选:A.6.计算(x+3y)2﹣(3x+y)2的结果是()A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)2【考点】完全平方公式;平方差公式.【分析】由平方差公式a2﹣b2=(a+b)(a﹣b),展开计算即可.【解答】解:原式=(x+3y+3x+y)(x+3y﹣3x﹣y)=(4x+4y)(﹣2x+2y)=8(x+y)(﹣x+y)=8(y2﹣x2)=8y2﹣8x2,故选B.7.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.8.计算(﹣2x+1)(﹣3x2)的结果为()A.6x3+1B.6x3﹣3C.6x3﹣3x2D.6x3+3x2【考点】单项式乘多项式.【分析】依据单项式乘多项式法则进行计算即可.【解答】解:原式=6x3﹣3x2.故选:C.9.分解因式:x2﹣4y2的结果是()A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)2【考点】因式分解-运用公式法.【分析】根据平方差公式直接分解即可.【解答】解:x2﹣4y2=(x+2y)(x﹣2y),故选:B.10.如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是()A.①②③B.、①C.、②D.、③【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】根据角平分线的定义可得∠BAD=∠CAD,然后利用“边角边”证明△ADC和△ADE全等,根据全等三角形对应边相等可得CD=DE,根据等边对等角可得∠CED=∠ECD,再根据两直线平行,内错角相等可得∠ECD=∠CEF,然后求出∠CED=∠CEF,再根据角平分线的定义判断出CE平分∠DEF,然后根据到线段两端点距离相等的点在线段的垂直平分线上判断出AD垂直平分CE.【解答】解:∵AD是角平分线,∴∠BAD=∠CAD,在△ADC和△ADE中,,∴△ADC≌△ADE(SAS),故①正确;∴CD=DE,∴∠CED=∠ECD,∵EF∥BC,∴∠ECD=∠CEF,∴∠CED=∠CEF,∴CE平分∠DEF,故②正确;∵AE=AC,CD=DE,∴AD垂直平分CE,故③正确;综上所述,正确的是①②③.故选A.二、填空题(共6小题,每小题3分,共18分)11.计算:20130﹣2﹣1=.【考点】负整数指数幂;零指数幂.【分析】根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.【解答】解:20130﹣2﹣1,=1﹣,=.故答案为:.12.化简的结果是m.【考点】分式的混合运算.【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是2+n.【考点】规律型:图形的变化类.【分析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n个图形的周长.【解答】解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为:2+n.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为6015.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是十一.【考点】多边形内角与外角.【分析】已知一个多边形的内角和与外角和的差为1260°,外角和是360度,因而内角和是1620度.n边形的内角和是(n﹣2)•180°,代入就得到一个关于n的方程,就可