2015-2016学年湖北省武汉市武昌区七校联考九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4B.3和﹣4C.3和﹣1D.3和12.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1)B.(2,2)C.(1,2)D.(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)2=±5.下列方程中没有实数根的是()A.x2﹣x﹣1=0B.x2+3x+2=0C.2015x2+11x﹣20=0D.x2+x+2=06.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)7.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.cmB.8cmC.6cmD.4cm8.已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是()A.a确定抛物线的形状与开口方向B.若将抛物线C沿y轴平移,则a,b的值不变C.若将抛物线C沿x轴平移,则a的值不变D.若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变9.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A.64B.16C.24D.3210.已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:①b2﹣4ac<0;②ab+ac<0;③方程ax2+bx+c=0有两个不同根x1、x2,且(x1﹣1)(1﹣x2)>0;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是()A.1B.2C.3D.4二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是_________.12.已知x=(b2﹣4c>0),则x2+bx+c的值为_________.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离_________.14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为_________.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是_________.16.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是_________.三、解答题(共8小题,共72分)17.解方程:x2+x﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(0,﹣4),求这个二次函数的解析式.19.已知x1、x2是方程x2﹣3x﹣5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x2﹣2015的值.20.如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(2)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.飞机着陆后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以acm/s速度运动,与此同时,点E从线段BC的某个端点出发,以bcm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒)(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B方向运动.当t≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.24.定义:我们把平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(1)已知抛物线的焦点F(0,),准线l:,求抛物线的解析式;(2)已知抛物线的解析式为:y=x2﹣n2,点A(0,)(n≠0),B(1,2﹣n2),P为抛物线上一点,求PA+PB的最小值及此时P点坐标;(3)若(2)中抛物线的顶点为C,抛物线与x轴的两个交点分别是D、E,过C、D、E三点作⊙M,⊙M上是否存在定点N?若存在,求出N点坐标并指出这样的定点N有几个;若不存在,请说明理由.2015-2016学年湖北省武汉市武昌区七校联考九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4B.3和﹣4C.3和﹣1D.3和1【考点】一元二次方程的一般形式.【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案.【解答】解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选B.【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1)B.(2,2)C.(1,2)D.(1,3)【考点】二次函数的性质.【分析】根据顶点坐标公式,可得答案.【解答】解:y=x2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x2﹣2x+2的顶点坐标是(1,1).故选:A.【点评】本题考查了二次函数的性质,二次函数的顶点坐标是(﹣,).3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°【考点】旋转的性质.【分析】先根据题意画出图形,利用旋转的性质得出OA=OA1,OB=OB1,AB=A1B1,那么根据SSS证明长△OAB≌△OA1B1,得到∠OAB=∠OA1B1,由等角的补角相等得出∠OAM=∠OA1M.设A1M与OA交于点D,在△OA1D与△MAD中,根据三角形内角和定理即可求出∠M=∠A1OD=50°.【解答】解:如图,△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则∠A1OA=50°,OA=OA1,OB=OB1,AB=A1B1.设直线AB与直线A1B1交于点M.由SSS易得△OAB≌△OA1B1,∴∠OAB=∠OA1B1,∴∠OAM=∠OA1M,设A1M与OA交于点D,在△OA1D与△MAD中,∵∠DAM=∠DA1O,∠ODA1=∠MDA,∴∠M=∠A1OD=50°.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质,补角的性质以及三角形内角和定理.证明出∠OAM=∠OA1M是解题的关键.4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)2=±【考点】解一元二次方程-配方法.【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案.【解答】解:∵x2+6x+4=0,∴x2+6x=﹣4,∴x2+6x+9=5,即(x+3)2=5.故选:C.【点评】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.下列方程中没有实数根的是()A.x2﹣x﹣1=0B.x2+3x+2=0C.2015x2+11x﹣20=0D.x2+x+2=0【考点】根的判别式.【分析】分别求出各个选项中一元二次方程根的判别式,进而作出判断.【解答】解:A、x2﹣x﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C、2015x2+11x﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确;故选D.【点评】本题主要考查了根的判别式的知识,利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.7.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.cmB.8cmC.6cmD.4cm【考点】垂径定理;勾股定理.【分析】由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.【解答】解:如图所示,连接OA.⊙O的直径CD=10cm,则⊙O的半径为5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足为M,∴AM=BM,在Rt△AOM中,AM==4,∴AB=2AM=2×4=8.故选B.【点评】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.8.已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是()A.a确定抛物线的形状与开口方向B.若将抛物线C沿y轴平移,则a,b的值不变C.若将抛物线C沿x轴平移,则a的值不变D.若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变【考点】二次函数图象与几何变换.【分析】根据平移的性质判断即可.【解答】解:∵平移的基本性质:平移不改变图形的形状和大小;∴抛物线C的解析式为y=ax2+bx+c,a确定抛物线的形状与开口方向;若将抛物线C沿y轴平移,顶点发生了变化,对称轴没有变化,a的值不变,则﹣不变,所以b的值不变;若将抛物线C沿直线l