2016-2017学年陕西省西安市新城区八年级(上)期中数学试卷一、选择题1.下列实数是无理数的是()A.﹣1B.0C.πD.2.下列各组数是勾股数的是()A.3,4,5B.7,8,9C.9,41,47D.52,122,1323.满足﹣<x<的整数x的个数是()A.1B.2C.3D.44.下列二次根式中的最简二次根式是()A.B.C.D.5.下列计算正确的是()A.2×3=6B.+=C.2﹣=2D.2÷=6.如果点P在第二象限内,点P到x轴的距离是5,到y轴的距离是2,那么点P的坐标为()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)7.点M(3,﹣4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为()A.(﹣3,4)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)8.某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示,则售价y与数量x的函数关系式为()数量x(千克)1234…售价y(元)8+0.416+0.824+1.232+1.6…A.y=8+0.4xB.y=8x+0.4C.y=8.4xD.y=8.4x+0.49.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A.2mB.2.5mC.2.25mD.3m10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题11.的立方根是.12.比较大小:.13.如图,说出数轴上点A所表示的数是.14.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=.15.如图,Rt△ABO中,∠ABO=90°,其顶点O为坐标原点,点B在第二象限,点A在x轴负半轴上.若BD⊥AO于点D,OB=,AB=2,则点A的坐标为,点B的坐标为.16.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运运,若∠AOB=45°,OP=2,则△PMN的周长的最小值为.17.如图:A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=2,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为.三、解答题18.计算(1)×﹣3(2)(+)(﹣)﹣(3)+﹣(4)(3﹣2+)÷2.19.解方程(1)4x2﹣1=0(2)8(x+1)3=﹣27.20.如图,在平面直角坐标系中,A(3,4),B(1,2),C(5,1).(1)如图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案).A1:,B1:,C1:;(3)求△ABC的面积.21.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)品牌进价(无/件)售价(元/件)A5080B406523.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=求4a2﹣8a+1的值.24.如图,已知在平面直角坐标系中,A(0,﹣1)、B(﹣2,0)、C(4,0)(1)求△ABC的面积;(2)在y轴上是否存在一个点D,使得△ABD是以AB为底的等腰三角形,若存在,求出点D坐标;若不存,说明理由.(3)有一个P(﹣4,a),使得S△PAB=S△ABC,请你求出a的值.四、附加题25.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)2016-2017学年陕西省西安市新城区八年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列实数是无理数的是()A.﹣1B.0C.πD.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是整数,是有理数,故A选项错误;B、是整数,是有理数,故B选项错误;C、是无理数,故C选项正确;D、是分数,是有理数,故D选项错误.故选:C.2.下列各组数是勾股数的是()A.3,4,5B.7,8,9C.9,41,47D.52,122,132【考点】勾股数.【分析】根据勾股定理的逆定理进行分析,从而得到答案.【解答】解:A、是,因为32+42=52;B、不是,因为72+82≠92;C、不是,因为92+412≠472;D、不是,因为(52)2+2.故选:A.3.满足﹣<x<的整数x的个数是()A.1B.2C.3D.4【考点】估算无理数的大小.【分析】先求出和的范围,即可得出答案.【解答】解:∵1,2<3,∴﹣2<﹣<﹣1,∴满足﹣<x<的整数x有﹣1,0,1,2,共4个,故选D.4.下列二次根式中的最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A5.下列计算正确的是()A.2×3=6B.+=C.2﹣=2D.2÷=【考点】二次根式的混合运算.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B、D进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=6,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式=,所以D选项正确.故选D.6.如果点P在第二象限内,点P到x轴的距离是5,到y轴的距离是2,那么点P的坐标为()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限内,点P到x轴的距离是5,到y轴的距离是2,∴点P的横坐标为﹣2,纵坐标为5,∴点P的坐标为(﹣2,5).故选C.7.点M(3,﹣4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为()A.(﹣3,4)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出M1,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.【解答】解:∵点M(3,﹣4)关于y的轴的对称点是M1,∴M1的坐标为(﹣3,﹣4),∴M1关于x轴的对称点M2的坐标为(﹣3,4).故选A.8.某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示,则售价y与数量x的函数关系式为()数量x(千1234…克)售价y(元)8+0.416+0.824+1.232+1.6…A.y=8+0.4xB.y=8x+0.4C.y=8.4xD.y=8.4x+0.4【考点】函数关系式.【分析】根据数量x与售价y如下表所示所提供的信息,列出售价y与数量x的函数关系式y=(8+0.4)x.【解答】解:依题意得:y=(8+0.4)x=8.4x,故选:C.9.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A.2mB.2.5mC.2.25mD.3m【考点】勾股定理的应用.【分析】经分析知:可以放到一个直角三角形中计算.此直角三角形的斜边是竹竿的长,设为x米.一条直角边是1.5,另一条直角边是(x﹣0.5)米.根据勾股定理,得:x2=1.52+(x﹣0.5)2,x=2.5.那么河水的深度即可解答.【解答】解:若假设竹竿长x米,则水深(x﹣0.5)米,由题意得,x2=1.52+(x﹣0.5)2解之得,x=2.5所以水深2.5﹣0.5=2米.故选A.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:B.二、填空题11.的立方根是.【考点】立方根.【分析】直接根据立方根的定义求解.【解答】解:的立方根为.故答案为.12.比较大小:>.【考点】实数大小比较.【分析】先求出的取值范围为3<<4,可得1<﹣2<2,再比较分子的大小即可求解.【解答】解:∵3<<4,∴1<﹣2<2,∴>.故答案为:>.13.如图,说出数轴上点A所表示的数是﹣.【考点】实数与数轴.【分析】先根据勾股定理求出斜边的长度,再根据点A在数轴上的位置即可求解.【解答】解:由勾股定理,得斜边的长为:=,则数轴上点A所表示的数是﹣.故答案为﹣.14.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=﹣2a+c.【考点】二次根式的性质与化简.【分析】直接利用数轴得出a+b﹣c<0,b﹣a>0,进而化简即可.【解答】解:由数轴可得:a+b﹣c<0,b﹣a>0,故:|a+b﹣c|+=﹣(a+b﹣c)+b﹣a=﹣2a+c.故答案为:﹣2a+c.15.如图,Rt△ABO中,∠ABO=90°,其顶点O为坐标原点,点B在第二象限,点A在x轴负半轴上.若BD⊥AO于点D,OB=,AB=2,则点A的坐标为(﹣5,0),点B的坐标为(﹣1,2).【考点】勾股定理;坐标与图形性质.【分析】根据勾股定理求出AO,即可得出A的坐标,证△BDO∽△ABO,得出比例式,代入求出OD、BD,即可得出B的坐标.【解答】解:在Rt△ABO中,∠A