2015-2016学年湖北省襄阳市宜城市九年级(上)期末数学试卷一、选择题(本大题有12小题,在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣32.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=153.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.正三角形C.平行四边形D.正方形4.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2.5B.3C.5D.105.如图,△ABC内接于⊙O,∠OBC=42°,则∠A的度数为()A.84°B.96°C.116°D.132°6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.47.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABCC.=D.=8.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球9.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6B.﹣6C.12D.﹣1210.如图,已知关于x的函数y=k(x﹣1)和y=(k≠0),它们在同一坐标系内的图象大致是()A.B.C.D.11.若抛物线y=(x﹣m)2+(m﹣1)的顶点在第四象限,则m的取值范围()A.0<m<1B.m>0C.m<1D.m>112.对于二次函数y=﹣x2+4x,有下列四个结论:①它的对称轴是直线x=2;②设y1=﹣x12+4x1,y2=﹣x22+4x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(4,0);④当0<x<4时,y>0.其中正确的结论的个数为()A.1B.2C.3D.4二、填空题(本题有6个小题,每小题3分,计15)13.方程x2=5的解是.14.二次函数y=﹣x2+2x+7的最大值为.15.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.16.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.17.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=.三、解答题:共69分.18.已知:关于x的方程x2﹣2mx+m2﹣1=0.(1)不解方程:判断方程根的情况;(2)若方程有一个根为﹣3,求m的值.19.某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,每个支干长出的小分支是多少?20.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论.21.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或树状图灯方法求出两次摸到的球是1个红球和1个白球的概率.22.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为10,求m的值.23.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,DE=6,求△AEF的面积.24.某服装店销售一种内衣,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x元/件的关系如表:销售单价x(元/件)…55607075…一周的销售量y(件)…450400300250…(1)试求出y与x的之间的函数关系式;(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价的什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)服装店决定将一周的销售内衣的利润全部捐给福利院,在服装店购进该内衣的贷款不超过8000元情况下,请求出该服装店最大捐款数额是多少元?25.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.26.在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.2015-2016学年湖北省襄阳市宜城市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有12小题,在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2=.2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.正三角形C.平行四边形D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2.5B.3C.5D.10【考点】切线的性质.【分析】根据直线与圆的位置关系可直接得到点O到直线l的距离是5.【解答】解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.【点评】本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;当直线l和⊙O相离⇔d>r.5.如图,△ABC内接于⊙O,∠OBC=42°,则∠A的度数为()A.84°B.96°C.116°D.132°【考点】圆内接四边形的性质;圆周角定理.【分析】连接OC,在优弧上取点D,连接BD、CD,根据等腰三角形的性质和三角形内角和定理求出∠BOC,根据圆周角定理求出∠BDC,根据圆内接四边形的性质计算即可.【解答】解:连接OC,在优弧上取点D,连接BD、CD,∵OB=OC,∴∠OCB=∠OBC=42°,∴∠BOC=96°,∴∠BDC=∠BOC=48°,∴∠A=180°﹣∠BDC=132°,故选:D.【点评】本题考查的是圆周角定理、圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.7.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABCC.=D.=【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.8.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【考点】随机事件.【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,9.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6B.﹣6C.12D.﹣12【考点】反比例函数图象上点的坐标特征.【分析】反比例函数的解析式为y=,把A(3,﹣4)代入求出k=﹣12,得出解析式,把B的坐标代入解析式即可.【解答】解:设反比例函数的解析式为y=,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故选A.【点评】本题考查了反比例函数图象上点的坐标特征的应用,解此题的关键是求出反比例函数的解析式,难度适中.10.如图,已知关于x的函数y=k(x﹣1)和y=(k≠0),它们在同一坐标系内的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据反比例函数图象所经过的象限判断出k的符号;然后由k的符号判定一次函数图象所经过的象限,图象一致的选项即为正确选项.【解答】解:A、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项错误;B、反比例函数y=(k≠