河南省信阳市罗山县2015-2016学年八年级(下)期末数学试卷(解析版)一、选择题1.下列根式中,不能与合并的是()A.B.C.D.2.如图所示,数轴上点A所表示的数为a,则a的值是()A.﹣1B.﹣+1C.+1D.3.如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.4.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.5.在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数6.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:那么关于这10户居民月用电量,下列说法错误的是()居民(户)1234月用电量(度/户)30425051A.中位数是50B.众数是51C.极差是21D.方差是427.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.4C.4D.288.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km/h.轮船先从甲地逆水航行到乙地,在乙地停留一段时间后,又从乙地顺水航行返回到甲地,设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是()A.B.C.D.二、填空题(每小题3分,共21分)9.化简×=.10.已知:(a+6)2+=0,则b2﹣2b+2a的值为.11.九年级1班9名学生参加学校的植树活动,活动结束后,统计每人植树的情况,植了2棵树的有5人,植了4棵树的有3人,植了5棵树的有1人,那么平均每人植树棵.12.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.13.在▱ABCD中,点O是对角线AC、BD的交点,AC垂直于BC,且AB=10cm,AD=8cm,则OB=cm.14.直线y=kx+b与直线y=﹣2x+1平行,且经过点(﹣2,3),则k+b=.15.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.三、解答题(共8题,75分)16.先化简,再求值:()÷,其中x=﹣2+.17.某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上为合格,达到9分以上(含9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:组别平均分中位数方差合格率优秀率甲6.73.4190%20%乙7.580%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.18.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m远的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?(画出符合题意的几何图形,并求解)19.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.20.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.21.小慧和小聪沿图1中的景区公路游览,小慧乘坐车速为30km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑自行车从飞瀑出发前往宾馆,速度为20km/h,中间不停留,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点,上午10:00小聪到达宾馆,图2中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系,试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交叉点B的坐标,并说明它的实际意义.22.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.23.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?2015-2016学年河南省信阳市罗山县八年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列根式中,不能与合并的是()A.B.C.D.【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选C.【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.2.如图所示,数轴上点A所表示的数为a,则a的值是()A.﹣1B.﹣+1C.+1D.【分析】首先计算出直角三角形斜边的长,然后再确定a的值.【解答】解:∵=,∴a=﹣1,故选:A.【点评】此题主要考查了实数与数轴,关键是利用勾股定理计算出直角三角形斜边长.3.如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.【分析】根据式子有意义和二次根式的概念,得到2x+6≥0,解不等式求出解集,根据数轴上表示不等式解集的要求选出正确选项即可.【解答】解:由题意得,2x+6≥0,解得,x≥﹣3,故选:C.【点评】本题考查度数二次根式的概念、一元一次不等式的解法以及解集在数轴上的表示方法,正确列出不等式是解题的关键,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.【点评】(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.5.在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数【分析】学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:那么关于这10户居民月用电量,下列说法错误的是()居民(户)1234月用电量(度/户)30425051A.中位数是50B.众数是51C.极差是21D.方差是42【分析】根据表格中的数据,求出平均数,中位数,众数,极差与方差,即可做出判断.【解答】解:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51﹣30=21,方差为[(30﹣46.8)2+2(42﹣46.8)2+3(50﹣46.8)2+4(51﹣46.8)2]=42.96.故选D.【点评】本题考查了方差,中位数,众数,以及极差,熟练掌握各自的求法是解本题的关键.7.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.4C.4D.28【分析】首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【解答】解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选:C.【点评】此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.8.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km/h.轮船先从甲地逆水航行到乙地,在乙地停留一段时间后,又从乙地顺水航行返回到甲地,设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是()A.B.C.D.【分析】根据逆流行驶用的时间长,顺流行驶用的时间短,中间停留路程没变化,可得答案.【解答】解:逆流行驶用的时间长,中间停留路程没变化,顺流行驶用的时间短,故C符合题意;故选:C.【点评】本题考查了函数图象,逆流行驶用的时间长,中间停留路程没变化,顺流行驶用的时间短.二、填空题(每小题3分,共21分)9.化简×=3.【分析】根据二次根式的乘法法则进行计算.【解答】解:原式===3,故答案为:3.【点评】主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=.10.已知:(a+6)2+=0,则b2﹣2b+2a的值为﹣9.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵(a+6)2+=0,∴a+6=0,b2﹣2b﹣3=0,∴a=﹣6,b2﹣2b=3,∴b2﹣2b+2a=3﹣12=﹣9,故答案为:﹣9.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.11.九年级1班9名学生参加学校的植树活动,活动结束后,统计每人植树的情况,植了2棵树的有5人,植了4棵树的有3人,植了5棵树的有1人,那么平均每人植树3棵.【分析】直接利用加权平均数的计算公式进行计算即可.【解答】解:平均每人植树=3棵,故答案为:3.【点评】本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,难度不大.12.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20.【分析】根据四边形ABCD