2015-2016学年江西省宜春市高安市八年级(下)期中数学试卷一、选择题:1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.以下各组数为边长的三角形中,能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,63.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC于点E,AD=6cm,则OE的长为()A.6cmB.4cmC.3cmD.2cm4.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形5.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=()A.30°B.45°C.22.5°D.135°6.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C的个数()A.6B.7C.8D.9二、填空题:7.已知函数y=,则自变量x的取值范围是.8.已知,则x3y+xy3=.9.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.10.如图,若▱ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD的面积为cm2.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).13.如图,矩形纸片ABCD中,AB=6cm,AD=10cm,点E、F在矩形ABCD的边AB、AD上运动,将△AEF沿EF折叠,使点A′在BC边上,当折痕EF移动时,点A′在BC边上也随之移动.则A′C的取值范围为.14.如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=.三、(共4小题,每小题6分,共24分)15.计算:(π﹣1)0++﹣2.16.先化简,再求值:,其中x=.17.在如图所示的5×5的正方形网格中,每个小正方形的边长均为1,按下列要求画图或填空;(1)画一条线段AB使它的另一端点B落在格点上(即小正方形的顶点),且AB=2;(2)以(1)中的AB为边画一个等腰△ABC,使点C落在格点上,且另两边的长都是无理数;(3)△ABC的周长为,面积为.18.已知实数a、b、c在数轴上的位置如图所示,化简:﹣|a+b|++|b﹣c|.四、(共4小题,每小题8分,共32分)19.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.20.已知a,b,c是△ABC的三边,且a2+b2+c2﹣12a﹣16b﹣20c+200=0,试判断△ABC的形状.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.五、(共1小题,每小题10分,共10分)23.图①是一面矩形彩旗完全展平时的尺寸图(单位:cm),其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面.(1)用经加工的圆木杆穿入旗裤作旗杆,求旗杆的最大直径(精确到1cm);(2)将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220cm,在无风的天气里,彩旗自然下垂,如图②,求彩旗下垂时最低处离地面的最小高度h.六、(共1小题,每小题12分,共12分)24.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.2015-2016学年江西省宜春市高安市八年级(下)期中数学试卷参考答案与试题解析一、选择题:1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.以下各组数为边长的三角形中,能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,6【考点】勾股定理的逆定理.【专题】计算题.【分析】根据勾股定理的逆定理进行分析,从而得到三角形的形状.【解答】解:A、不能,因为12+22≠32;B、不能,因为22+32≠42;C、能,因为32+42=52;D、不能,因为42+52≠62.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.3.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC于点E,AD=6cm,则OE的长为()A.6cmB.4cmC.3cmD.2cm【考点】菱形的性质.【分析】首先根据菱形的性质可得AO=CO,AB=AD=6cm,再根据三角形中位线定义和性质可得BA=2OE,进而得到答案.【解答】解:∵四边形ABCD是菱形,∴AO=CO,AB=AD=6cm,∵E为CB的中点,∴OE是△ABC的中位线,∴BA=2OE,∴OE=3cm.故选C.【点评】此题主要考查了菱形的性质,以及三角形中位线性质,解题关键是掌握菱形的四边相等这一重要性质.4.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【考点】三角形中位线定理;菱形的判定.【分析】根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【解答】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点评】本题主要考查对菱形的判定,三角形的中位线定理,平行四边形的判定等知识点的理解和掌握,灵活运用性质进行推理是解此题的关键.5.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=()A.30°B.45°C.22.5°D.135°【考点】菱形的性质;正方形的性质.【分析】由正方形的性质得对角线AC平分直角,因为菱形的对角线平分所在的角,所以∠FAB为直角的.【解答】解:因为AC为正方形ABCD的对角线,则∠CAE=45°,又因为菱形的每一条对角线平分一组对角,则∠FAB=22.5°,故选:C.【点评】此题主要考查了正方形、菱形的对角线的性质.6.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C的个数()A.6B.7C.8D.9【考点】勾股定理的逆定理;勾股定理.【专题】压轴题;网格型.【分析】如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C的个数.【解答】解:根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共8个.故选C.【点评】本题主要考查了直角三角形的性质,解题时要注意找出所有符合条件的点.二、填空题:7.已知函数y=,则自变量x的取值范围是x≥﹣且x≠2.【考点】函数自变量的取值范围.【专题】计算题.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣2≠0,解得x≥﹣且x≠2.故答案为:x≥﹣且x≠2.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.8.已知,则x3y+xy3=10.【考点】二次根式的化简求值.【专题】计算题.【分析】由已知得x+y=2,xy=1,把x3y+xy3分解因式再代入计算.【解答】解:∵,∴x+y=2,xy=1,∴x3y+xy3=xy(x2+y2)=xy[(x+y)2﹣2xy]=(2)2﹣2=10.【点评】解题时注意,灵活应用二次根式的乘除法法则,切忌把x、y直接代入求值.9.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【考点】矩形的性质.【专题】计算题.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.10.如图,若▱ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD的面积为40cm2.【考点】平行四边形的性质.【分析】由▱ABCD的周长为36cm,可得AB+BC=18cm①,又由过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,由等积法,可得4AB=5BC②,继而求得答案.【解答】解:∵▱ABCD的周长为36cm,∴AB+BC=18cm①,∵过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,∴4AB=5BC②,由①②得:AB=10cm,BC=8cm,∴▱ABCD的面积为:AB•DE=40(cm2).故答案为:40.【点评】此题考查了平行四边形的性质.注意利用方程思想求解是解此题的关键.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【考点】勾股定理.【专题】计算题.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为1.3m(容器厚度忽略不计).【考点】平面展开-最短路径问题.【分析】将容