广西玉林灌阳县2016-2017年八年级数学上册期末模拟题一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有()A.4个B.5个C.6个D.7个2.化简的结果是()A.x+1B.C.x﹣1D.3.分式方程=1的解为()A.1B.2C.D.04.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5.用科学记数法表示0.00001032,下列正确的是()A.0.1032×10﹣4B.1.032×103C.10.32×10﹣6D.1.032×10﹣56.正多边形的一个内角是150°,则这个正多边形的边数为()A.10B.11C.12D.137.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°8.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°9.下列分式不是最简分式的是()A.B.C.D.10.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线11.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D12.如图,△ABC中,∠A=α°,BO、CO分别是∠ABC、∠ACB的平分线,则∠BOC的度数是()A.2α°B.(α+60)°C.(α+90)°D.(α+90)°二、填空题(本大题共6小题,每小题3分,共18分)13.当x=时,分式无意义;当x时,分式有意义.14.已知﹣(x﹣1)0有意义,则x的取值范围是.15.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.16.如图,已知AF∥EC,AB∥CD,∠A=65°,则∠C=度.17.如图,AB=AC=4cm,DB=DC,若∠ABC为60度,则BE为.18.广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是.三、计算题(本大题共1小题,共3分)19.四、解答题(本大题共8小题,共60分)20.(1)已知方程的解是关于x的方程x2﹣2kx=0的解,求k的值.(2)解方程:=+.21.先化简再求值:,其中a=﹣1.22.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.=123.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.24.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.25.随着国家刺激消费政策的落实,我市拥有家用汽车的数量快速增长,截止2009年底我市家用汽车拥有量为76032辆.己知2007年底我市家用汽车拥有量为52800辆.请解答如下问题:(1)2007年底至2009年底我市家用汽车拥有量的年平均增长率是多少?(2)为保护城市环境,市政府要求到2011年底家用汽车拥有量不超过80000辆,据估计从2009年底起,此后每年报废的家用汽车数量是上年底家用汽车拥有量的4%,要达到市政府的要求,每年新增家用汽车数量最多不超过多少辆?(假定每年新增家用汽车数量相同,结果精确到个位)26.如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过点A的直线作垂线,垂足分别为点E、F.(1)如图(1),过A的直线与斜边BC不相交时,求证:①△ABE≌△CAF;②EF=BE+CF(2)如图(2),过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,试求EF的长.答案1.C2.A3.A.4.A.5.D6.C7.C8.D9.D10.A11.A12.D13.答案为:1;≠±3.14.答案为:x≠2且x≠1.15.5.5cm16.答案为:6517.答案为2cm.18.答案为:6n﹣6.19.20.(1)解:,方程的两边同乘2(x﹣1),得2=x﹣1,解得x=3.经检验:x=3是原方程的根.将x=3代入方程x2﹣2kx=0,得9﹣6k=0,解得k=.(2)解:去分母得:14x=4x+32+10,移项合并得:10x=42,解得:x=4.2,经检验x=4.2是分式方程的解21.解:原式=•=,当a=﹣1时,原式=﹣1.22.【解答】解:由=1整理,得2×﹣=1,即+=1,解之得:x=4.经检验:x=4是原方程的解.23.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.24.【解答】(1)证明:∵△ABC为等边三角形,∴AB=CA=BC,∠BAE=∠ACD=60°;在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE;(2)解:∵△ABE≌△CAD,∴∠CAD=∠ABE,∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,∴∠PBQ=90°﹣60°=30°,∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6,又∵PE=1,∴AD=BE=BP+PE=6+1=7.25.20%26.【解答】(1)证明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°,∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC,在△AEB与△CFA中∴△ABE≌△CAF(AAS),②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF;(2)解:∵BE⊥AF,CF⊥AF∴∠AEB=∠CFA=90°∴∠EAB+∠EBA=90°∵∠BAC=90°∴∠EAB+∠FAC=90°∴∠EBA=∠FAC,在△AEB与△CFA中∴△ABE≌△CAF(AAS),∴EA=FC,EB=FA,∴EF=FA﹣EA=EB﹣FC=10﹣3=7.