山东省枣庄市滕州市2015~2016学年度八年级上学期期末数学试卷一、选择题(共15小题,每小题3分,满分45分)1.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间2.下列二次根式中,不能与合并的是()A.B.C.D.3.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°4.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短5.已知点A(a﹣2,a+1)在x轴上,则a等于()A.1B.0C.﹣1D.26.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或337.一条直线y=kx+b,其中k+b<0,kb>0,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限8.如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值()A.﹣2B.2C.﹣6D.69.已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.210.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.3cmB.4cmC.5cmD.6cm11.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.12.如果二元一次方程组的解是方程2x+3y﹣3=0的一个解,那么a的值是()A.4B.3C.2D.113.如图,一个正比例函数图象与一次函数y=﹣x+1的图象相交于一点,则这个正比例函数的表达式是()A.y=﹣2xB.y=2xC.y=xD.y=﹣x14.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)33.544.5人数1121A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.815.某车间有60名工人,每人每天能生产螺栓16个或螺母24个,设有x名工人生产螺栓,y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程正确的是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)16.若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐标为.17.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.18.若,则(b﹣a)2015=.19.若已知数据x1,x2,x3的平均数为a,那么数据2x1+1,2x2+1,2x3+1的平均数为(用含a的代数式表示).20.若=3﹣x,则x的取值范围是.21.如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是.22.有一块土地的形状如图所示,∠B=∠D=90°,AB=20m,BC=15m,CD=7m,则这块土地的面积为.23.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=3,则BC的长为.三、解答题(共7小题,满分51分)24.计算:(1)(2).25.解方程组:(1)(2).26.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.27.如图,AB∥CD,∠CDE=120°,CF交∠DEB的平分线EF于点F,∠AGF=130°,求∠F的度数.28.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?29.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.30.高铁的开通,给滕州市民带来了极大的方便,“元旦”期间,乐乐和明明相约到济南的某游乐园游玩,乐乐乘私家车从滕州出发1小时后,明明乘坐高铁从滕州出发,先到济南火车西站,然后再乘出租车到游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开滕州的距离y(千米)与乘车时间t(小时)的关系如图所示,请结合图象解决下面问题:(1)求明明乘高铁路线的y与t的函数关系式;(2)当明明到达济南火车西站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?山东省枣庄市滕州市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【专题】计算题.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.2.下列二次根式中,不能与合并的是()A.B.C.D.【考点】同类二次根式.【专题】常规题型.【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.【解答】解:A、,故A能与合并;B、,故B能与合并;C、,故C不能与合并;D、,故D能与合并;故选:C.【点评】本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式.3.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°【考点】平行线的性质;等边三角形的性质.【专题】计算题.【分析】延长AC交直线m于D,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠3,再根据两直线平行,内错角相等解答即可.【解答】解:如图,延长AC交直线m于D,∵△ABC是等边三角形,∴∠3=60°﹣∠1=60°﹣20°=40°,∵l∥m,∴∠2=∠3=40°.故选:C.【点评】本题考查了平行线的性质,等边三角形的性质,熟记性质并作辅助线是解题的关键,也是本题的难点.4.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短【考点】命题与定理.【专题】常规题型.【分析】根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.【解答】解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.已知点A(a﹣2,a+1)在x轴上,则a等于()A.1B.0C.﹣1D.2【考点】点的坐标.【分析】根据x轴上点的纵坐标为0列式计算即可得解.【解答】解:∵点A(a﹣2,a+1)在x轴上,∴a+1=0,解得a=﹣1.故选C.【点评】本题考查了点的坐标,主要利用了x轴上的点的纵坐标相等,需熟记.6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或33【考点】勾股定理.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选C.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.7.一条直线y=kx+b,其中k+b<0,kb>0,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限【考点】一次函数图象与系数的关系.【分析】根据k+b<0,kb>0,可得k<0,b<0,从而可知一条直线y=kx+b的图象经过哪几个象限.【解答】解:∵k+b<0,kb>0,∴k<0,b<0,∴y=kx+b的图象经过第二、三、四象限,故选D.【点评】本题考查一次函数图象与系数的关系,解题的关键是明确k、b的正负不同,函数图象相应的在哪几个象限.8.如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值()A.﹣2B.2C.﹣6D.6【考点】待定系数法求一次函数解析式;关于x轴、y轴对称的点的坐标.【专题】数形结合.【分析】先得出关于y轴对称的点P的坐标,然后代入运用待定系数法运算即可.【解答】解:由题意得:P′的坐标为(2,4),代入得:2+b=4,解得:b=2.故选B.【点评】本题考查待定系数法求一次函数解析式,比较简单,注意掌握关于y轴对称的点的坐标的特点.9.已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.2【考点】解二元一次方程组.【专题】计算题.【分析】求出方程组的解得到a与b的值,即可确定出a+b的值.【解答】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4,故选B.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.3cmB.4cmC.5cmD.6cm【考点】翻折变换(折叠问题).【分析】首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x,则BD=8﹣x,在△BDE中,利用勾股定理列方程求解即可.【解答】解:在Rt△ABC中,由勾股定理可知:AB===10,由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB﹣AE=10﹣6=4,∠DEB=90°,设DC=x,则BD=8﹣x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8﹣x)2,解得:x=3,∴CD=3.故选A.【点评】本题主要考查的是翻折变换、勾股定理的应用;熟练掌握翻折的性质和勾股定理是解决问题的关键.11.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.【考点】一次函数的图象.【分析】首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.【点评】此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>