2015-2016学年山东省枣庄市滕州市八年级(下)期中数学试卷一、选择题(共15小题,每小题3分,满分45分)1.若x>y,则下列等式不一定成立的是()A.x+4>y+4B.﹣3x<﹣3yC.D.x2>y22.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°4.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是()A.B.C.D.5.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°6.不等式组的所有整数解的和是()A.2B.3C.5D.67.在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是()A.(3,﹣3)B.(﹣3,3)C.(3,3)或(﹣3,﹣3)D.(3,﹣3)或(﹣3,3)8.如果不等式组的解集为<5,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤59.如图,在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠DBC=15°,则∠A的度数是()A.50°B.20°C.30°D.25°10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对11.如图,将一个含有45°角的直角三角板的直角顶点放在一张宽为2cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上.若测得三角板的一边与纸带的一边所在的直线成30°角,则三角板最长边的长是()A.2cmB.4cmC.2cmD.4cm12.若a<﹣1,那么不等式(a+1)x>a+1的解集为()A.x>1B.x<1C.x>﹣1D.x<﹣113.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°14.滕州市出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付6元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地路程是x千米,出租车费为16.5元,那么x的最大值是()A.11B.10C.9D.815.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A7B7A8的边长为()A.6B.12C.32D.64二.填空题16.若代数式的值不小于1,则t的取值范围是.17.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.18.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.19.等腰三角形一腰上的高与另一腰的夹角的度数为10°,则顶角的度数为.20.若不等式x<a的正整数解有两个,那么a的取值范围是.21.如图,在Rt△ABC中,∠ABC=90°,AB=BC=.将△ABC绕点C逆时针旋转60°,得到△MNC,则AM的长是.三.解答题22.解一元一次不等式(组),并把解集表示在数轴上.(1)(2).23.定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,求不等式3⊕x<25的解集.24.△ABC在平面直角坐标系xOy中的位置如图所示,点A的坐标为(﹣2,3),点B的坐标为(﹣1,1),点C的坐标为(0,2).(1)作△ABC关于点C成中心对称的△A1BlCl.(2)将△A1BlCl向右平移4个单位,作出平移后的△A2B2C2.(3)点P是x轴上的一点,并且使得PA1+PC2的值最小,则点P的坐标为(,).25.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF.(1)判断△CDF的形状并证明.(2)若BC=6,AF=2,求AB的长.26.若方程组的解中,x是正数,y是非正数.(!)求k的正整数解;(2)在(1)的条件下求一次函数y=与坐标轴围成的面积.27.如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于点F.(1)求证:∠FAD=∠FDA;(2)若∠B=50°,求∠CAF的度数.28.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克,乙种原料3千克,可获利700元;生产1件B种产品需甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品可获总利润是y元,其中A种产品的生产件数是x.(1)写出y与x之间的函数关系式;(2)符合题意的生产方案有几种?请你帮忙设计出来;(3)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.2015-2016学年山东省枣庄市滕州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.若x>y,则下列等式不一定成立的是()A.x+4>y+4B.﹣3x<﹣3yC.D.x2>y2【考点】不等式的性质.【分析】依据不等式的基本性质解答即可.【解答】解:A、由不等式的基本性质1可知A正确;B、由不等式的基本性质3可知B正确;C、由不等式的性质2可知C正确;D、不符合不等式的基本性质,故D错误.故选:D.【点评】本题主要考查的是不等式的基本性质,掌握不等式的基本性质是解题的关键.2.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选C.【点评】掌握好中心对称图形的概念.中心对称图形关键是要寻找对称中心,旋转180度后两部分重合.3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.4.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】不等式移项,再两边同时除以2,即可求解.【解答】解:不等式得:x≥﹣2,其数轴上表示为:故选B【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.6.不等式组的所有整数解的和是()A.2B.3C.5D.6【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.【解答】解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故选D.【点评】本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.7.在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是()A.(3,﹣3)B.(﹣3,3)C.(3,3)或(﹣3,﹣3)D.(3,﹣3)或(﹣3,3)【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】分类讨论.【分析】首先利用平移的性质得出点P1的坐标,再利用旋转的性质得出符合题意的答案.【解答】解:∵把点P(﹣5,3)向右平移8个单位得到点P1,∴点P1的坐标为:(3,3),如图所示:将点P1绕原点逆时针旋转90°得到点P2,则其坐标为:(﹣3,3),将点P1绕原点顺时针旋转90°得到点P3,则其坐标为:(3,﹣3),故符合题意的点的坐标为:(3,﹣3)或(﹣3,3).故选:D.【点评】此题主要考查了坐标与图形的变化,正确利用图形分类讨论得出是解题关键.8.如果不等式组的解集为<5,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤5【考点】解一元一次不等式组.【分析】根据“同小取较小”的原则进行解答即可.【解答】解:∵不等式组的解集为<5,∴m≥5.故选B.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.9.如图,在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠DBC=15°,则∠A的度数是()A.50°B.20°C.30°D.25°【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角可得∠A=∠ABD,∠ABC=∠C,然后根据三角形的内角和等于180°方程求解即可.【解答】解:∵AB的垂直平分线DE交AC于D,∴AD=BD,∴∠A=∠ABD,∵AB=AC,∴∠ABC=∠C,∵∠DBC=15°,∴∠ABC=∠C=∠A+15°,在△ABC中,∠A+∠ABC+∠C=180°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故选A.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,熟记性质与定理并列出方程是解题的关键.10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE