资阳市安岳县2017届九年级上期中数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2016-2017学年四川省资阳市安岳县XX中学九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2B.x>﹣2C.x≥2D.x≤22.关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a的值为()A.2B.﹣2C.2或﹣2D.03.下列运算正确的是()A.=±5B.4﹣=1C.•=6D.÷=94.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠25.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.56.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.57.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5B.m=4C.m=3D.m=108.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.9.已知△ABC的三个顶点A(5,6)、B(7,2)、C(4,3),先将△ABC向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段△A′B′C′,则点A的对应点A′的坐标为()A.(2,1)B.(3,1)C.(2,3)D.(3,3)10.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题3分,满分24分)11.实数p在数轴上的位置如图所示,化简=.12.设x1、x2是一元二次方程x2﹣5x﹣1=0的两实数根,则x12+x22的值为.13.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为.14.如图,在△ABC中,已知DE∥BC,,则△ADE与△ABC的面积比为.15.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为.16.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为m.17.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.18.李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=时,n=.三、解答题(共10个小题,66分)19.计算:|1﹣2|+(﹣1)2016×(π﹣3)0﹣+(﹣2)﹣2.20.解方程:(1)x2﹣1=2(x+1)(2)x2﹣6x﹣4=0.21.如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若EF=6,求EM.22.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.23.如图,在边长为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.24.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.25.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.26.如图,已知直线l:y=﹣2x+12交x轴于点A,交y轴于点B,点C在线段OB上运动(不与O、B重合),连接AC,作CD⊥AC,交线段AB于点D.(1)求A、B两点的坐标;(2)当点D的纵坐标为8时,求点C的坐标;(3)过点B作直线BP⊥y轴,交CD的延长线于点P,设OC=m,BP=n,试求n与m的函数关系式,并直接写出m、n的取值范围.2016-2017学年四川省资阳市安岳县XX中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2B.x>﹣2C.x≥2D.x≤2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:x﹣2≥0,解得x≥2.故选:C.2.关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a的值为()A.2B.﹣2C.2或﹣2D.0【考点】一元二次方程的解.【分析】由一元二次方程的定义,可知a﹣2≠0;一根是0,代入(a﹣2)x2+x+a2﹣4=0可得a2﹣4=0.a的值可求.【解答】解:∵(a﹣2)x2+x+a2﹣4=0是关于x的一元二次方程,∴a﹣2≠0,即a≠2①由一个根是0,代入(a﹣2)x2+x+a2﹣4=0,可得a2﹣4=0,解之得a=±2;②由①②得a=﹣2.故选B.3.下列运算正确的是()A.=±5B.4﹣=1C.•=6D.÷=9【考点】二次根式的混合运算.【分析】利用二次根式的乘法和除法法则,以及二次根式的加减法法则即可判断.【解答】解:A、=5,故选项错误;B、4﹣=4﹣3=,故选项错误;C、•===6,选项正确;D、÷==3,选项错误.故选C.4.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.5.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.5【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得等量关系:2013年的快递业务量×(1+增长率)2=2015年的快递业务量,根据等量关系列出方程即可.【解答】解:设2014年与2015年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.6.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.5【考点】平行线分线段成比例.【分析】直接根据平行线分线段成比例定理即可得出结论.【解答】解:∵直线a∥b∥c,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选B.7.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5B.m=4C.m=3D.m=10【考点】相似三角形的判定与性质;平行四边形的性质.【分析】先根据平行四边形的性质求出△OCD∽△OEB,再根据相似三角形的性质解答即可.【解答】解:∵AB∥CD,∴△OCD∽△OEB,又∵E是AB的中点,∴2EB=AB=CD,∴=()2,即,解得m=4,故选B.8.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.【考点】相似三角形的判定与性质.【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.9.已知△ABC的三个顶点A(5,6)、B(7,2)、C(4,3),先将△ABC向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段△A′B′C′,则点A的对应点A′的坐标为()A.(2,1)B.(3,1)C.(2,3)D.(3,3)【考点】位似变换;坐标与图形变化-平移.【分析】平移后的三角形记作△A1B1C1,连接OA1、OB1、OC1,分别取OA1、OB1、OC1的中点A′、B′、C′,△A′B′C′即为所求.【解答】解:△A′B′C′如图所示,由图象可知,则点A的对应点A′的坐标为(2,3).故选C.10.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠EC

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功