江西省赣州三中2014-2015人教版九年级数学下27图形的相似单元测试卷考试时间:100分钟满分:120分题号总分得分一、单选题(每题3分,共8题,共24分)1.如图□ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A.2:5B.3:5C.2:3D.5:72.如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为A.1.5米B.2.3米C.3.2米D.7.8米3.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为(-)A.0.36π米2B.0.81π米2C.2π米2D.3.24π米24.如图所示,在△ABC中∠BAC=90°,D是BC中点,AE⊥AD交CB延长线于E点,则下列结论正确的是()A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC5.下列各组图形不一定相似的是()A.两个等腰直角三角形,B.各有一个角是100°的两个等腰三角形C.两个矩形D.各有一个角是50°的两个直角三角形6.下列四个三角形,与右图中的三角形相似的是()7.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2B.1:3C.1:4D.1:58.已知,则下列式子中正确的是()A.a∶b=c2∶d2B.a∶d=c∶bC.a∶b=(a+c)∶(b+d)D.a∶b=(a-d)∶(b-d)二、填空题(每题3分,共6题,共18分)9.△ABC∽△A’B’C’,且相似比是3:4,△ABC的周长是27cm,则△A’B’C’的周长为___________cm.10.在比例尺1:50000的地图上,量得A、B两地的距离为4cm,则A、B两地的实际距离是___________千米11.如果,那么12.若,则的值为,的值为13.如图,□ABCD中,点E是AD边的中点,BE交对角线AC于点F,若AF=2,则对角线AC长为.14.如图,是的黄金分割点,,以为边的正方形的面积为,以为边的矩形的面积为,则_______(填“>”“<”“=”).三、计算题(每题6分,共3题,共18分)15.已知:,求的值.16.如图D,E分别是△ABC的AB,AC边上的点,且DE∥BC,AD∶AB=1∶4,(1)证明:△ADE∽△ABC;(2)当DE=2,求BC的长17.+-sin45º+(-2)0.四、解答题18.(8分)已知:如图,DE∥BC交BA的延长线于D,交CA的延长线于E,AD=4,DB=12,DE=3.求BC的长19.(8分)在比例尺为1∶50000的地图上,一块多边形地区的周长是72cm,多边形的两个顶点A、B之间的距离是25cm,求这个地区的实际边界长和A、B两地之间的实际距离20.(9分)已知:如图,在△ABC中,∠ACB=900,CD⊥AB,垂足是D,BC=,BD=1。求CD,AD的长。21.已知:,试判断直线一定经过哪些象限,并说明理由。(10分)22.(10分)如图,在方格纸中(1)请在方格纸上建立平面直角坐标系,使,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.23.(12分)如图所示,直角坐标系内,A(-4,3),B(-2,0),C(-1,2),请你在图中画出△ABC关于原点O的对称的图形即△A′B′C′,并写出A′、B′、C′的坐标,求出△A′B′C′的面积.24.(本题满分12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.【小题1】(1)求证:点E是边BC的中点;(4分)【小题2】(2)若EC=3,BD=,求⊙O的直径AC的长度;(4分)【小题3】(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.(4分)答案与解析:1.答案:A2.答案:C.解析:试题分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.解答:解:设树高为x米,因为,所以解得:x=3.2.故选C.考点:相似三角形的应用.3.答案:B解析:考点:相似三角形的应用.分析:桌面离地面1米.若灯泡离地面3米,则灯泡离地面是2米,桌面与阴影是相似图形,相似比是2:3,两个图形的半径的比就是相似比,设阴影部分的直径是xm,则1.2:x=2:3解得:x=1.8,因而地面上阴影部分的面积为0.81π米2.解:设阴影部分的直径是xm,则1.2:x=2:3解得x=1.8,所以地面上阴影部分的面积为:S=πr2=0.81πm2.故选B.4.答案:C5.知识点:相似图形答案:C6.答案:B7.答案:A。8.答案:C解析:试题分析:根据比例的基本性质依次分析各项即可判断.A.a2∶b2=c2∶d2,B.ad=cb,D.a∶b=(a-c)∶(b-d),故错误;C.a∶b=(a+c)∶(b+d),本选项正确.考点:本题考查的是比例的性质点评:解答本题的关键是熟练掌握比例的基本性质,正确运用比例的基本性质解题9.知识点:相似三角形的性质答案:3610.知识点:比例线段答案:2千米11.答案:.解析:试题分析:由已知得,代入即可求出答案.试题解析:∵∴∴考点:比例的性质12.答案:,13.答案:6解析:试题分析:本题关键运用相似三角形的判定与性质解决问题,∵□ABCD中,点E是AD边的中点△AEF∽△BFC∴AC=6考点:1.平行四边形;2.相似三角形的判定与性质14.答案:=15.答案:.解析:试题分析:设比值为k,用k表示出x、y、z,然后代入比例式进行计算即可得解.试题解析:设,则x=2k,y=4k,z=5k,∴.考点:1.比例的性质;2.待定系数法的应用.16.答案:(1)证明见试题解析;(2)8.解析:试题分析:(1)根据DE∥BC,可得∠ADE=∠B,∠AED=∠C,∠A=∠A,即可证明;(2)根据相似三角形对应边成比例即可求解;试题解析:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∠A=∠A,∴△ADE∽△ABC;(2)∵△ADE∽△ABC,∴,AD:AB=1:4,DE=2,∴.考点:相似三角形的判定与性质.17.答案:118.答案:解:∵DE∥BC∴∠B=∠D,∠C=∠E∴△ABC∽△ADE------------------2分∴-----------------3分∵AD=4,DB=12,DE=3∴------------------4分∴BC=6--------------------5分19.知识点:相似多边形的性质答案:36千米,5千米解析:试题分析:根据比例尺=图上距离:实际距离,即可计算对应的实际边和实际周长.∵实际距离=图上距离×比例尺,∴A、B两地之间的实际距离=25×50000=1250000cm=12.5km;这个地区的实际边界长=72×50000=3600000cm=36km.考点:比例尺点评:比例尺的问题是中考常见题,一般难度不大,学生只需正确理解比例尺的定义即可20.答案:521.答案:解:直线一定经过第二、三象限,理由如下:当时,∵∴此时,=2+2,经过第一、二、三象限;当时,,此时,此时,经过第二、三、四象限。综上所述,一定经过第二、三象限。22.答案:作图见解析,A′(4,-3)、B′(2,0)、C′(1,-2),.解析:试题分析:试题解析:作图如下:23.A′(4,-3)、B′(2,0)、C′(1,-2).△A′B′C′的面积=3×3-×1×2-×1×3-×2×3=.考点:1.作图-中心对称变换;2.转换思想的应用23.答案:(1)B(2,1)(2)如图所示(3)S=1624.答案:【小题1】(1)证明:连接DO,∵∠ACB=90°,AC为直径,∴EC为⊙O的切线,又∵ED也为⊙O的切线,∴EC=ED.(2分)又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°,又∵∠B+∠A=90°∴∠BDE=∠B,∴EB=ED.∴EB=EC,即点E是边BC的中点.【小题2】(2)∵BC,BA分别是⊙O的切线和割线,∴BC2=BD·BA,∴(2EC)2=BD·BA,即BA·=36,∴BA=,(6分)在Rt△ABC中,由勾股定理得AC===.【小题3】(3)△ABC是等腰直角三角形.(9分)理由:∵四边形ODEC为正方形,∴∠DOC=∠ACB=90°,即DO∥BC,又∵点E是边BC的中点,∴BC=2OD=AC,∴△ABC是等腰直角三角形.(12分)