天津市西青区2017年九年级下《相似三角形》单元试题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2017年九年级下册相似三角形单元试题一选择题:1.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.52.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是()A.②B.①②C.③④D.②③④3.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5B.8C.10.5D.144.若△ABC∽△DEF,且AB∶DE=2∶3,则AB与DE边上的高h1与h2之比为()A.2:3B.3:2C.4:9D.9:45.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8B.3:8C.3:5D.2:56.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.D.7.在中华经典美文阅读中,刘明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cmB.13.6cmC.32.36cmD.7.64cm8.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()A.6B.5C.9D.9.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.610.如图所示,已知E(-4,2)和F(-1,1),以原点O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E/的坐标为()A.(2,1)B.(,)C.(2,-1)D.(2,-)11.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.12.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网()A.7.5米处B.8米处C.10米处D.15米处二填空题:13.已知2a-3b=0,b≠0,则a:b=______.14.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为.15.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)16.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.17.将正方形与直角三角形纸片按如图所示方式叠放在一起,已知正方形的边长为20cm,点O为正方形的中心,AB=5cm,则CD的长为cm.18.如图,小东设计两个直角,来测量河宽DE,他量得AD=2m,BD=3m,CE=9m,则河宽DE为19.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是米.20.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=.三解答题:21.如图所示是两个相似四边形,求边x、y的长和∠α的大小.22.如图,已知在△ABC中,点D、E、F分别在AC、AB、BC边上,且四边形CDEF是正方形,AC=3,BC=2,求△ADE、△EFB、△ACB的周长之比和面积之比.23.如图,D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.24.如图,在梯形ABCD中,AD∥BC,∠BAD=90o对角线BD⊥DC.试问:(1)△ABD与△DCB相似吗?请说明理由。(2)如果AD=4,BC=9,你能求出BD的长吗?25.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.2017年九年级下册相似三角形单元试题答案1.B2.A3.B4.A5.A6.D7.A8.A9.C10.C11.B12.C13.略14.答案为:6.15.AB∥DE;16.【解答】解:∵△ABC与△DEF相似且面积之比为25:16,∴△ABC与△DEF的相似比为5:4;∴△ABC与△DEF的周长之比为5:4.故答案为:5:4.17.2018.略19.1220.21.22.略23.24.略25.【解答】(1)证明:连接OD;∵AD是∠BAC的平分线,∴∠1=∠3.∵OA=OD,∴∠1=∠2.∴∠2=∠3.∴OD∥AC.∴∠ODB=∠ACB=90°.∴OD⊥BC.∴BC是⊙O切线.(2)解:过点D作DE⊥AB,∵AD是∠BAC的平分线,∴CD=DE=3.在Rt△BDE中,∠BED=90°,由勾股定理得:BE=4∵∠BED=∠ACB=90°,∠B=∠B,∴△BDE∽△BAC.∴.∴AC=6.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功