TranslationTheconceptsofstressandstraincanbeillustratedinanelementarywaybyconsideringtheextensionofaprismaticbar.AsshowninFig.1,aprismaticbarisonethathasconstantcrosssectionthroughoutitslengthandastraightaxis.InthisillustrationthebarisassumedtobeloadedatitsendsbyaxialforcesPthatproduceauniformstretching,ortension,ofthebar.应力和应变的概念可以通过考虑一根矩形梁的拉伸的简单方法来举例说明。如图1所示,这根矩形梁可以看作是由遍及长度方向的连续横截面所组成,这些横截面垂直于它的轴向。在这个例子中,这根矩形梁被假定在它两端施加了一对使它发生均匀拉伸的轴向力P。Bymakinganartificialcut(sectionmm)throughthebaratrightanglestoitsaxis,wecanisolatepartofthebarasafreebody[seeFig.1(b)].Attheleft-handendthetensileforcePisapplied,andattheotherendthereareforcesrepresentingtheactionoftheremovedportionofthebaruponthepartthatremains.Theseforceswillbecontinuouslydistributedoverthepartcrosssection,analogoustothecontinuousdistributionofhydrostaticpressureoverasubmergedsurface.假设在梁的轴向上做一个垂直截面(截面mm),可以分离出一部分自由的梁[见图1(b)]。在该梁的左端,有拉力P,而在另一端有相应的力可以替代梁的分离部分对它的作用。这些力连续分布在横截面上,类似于在水平面下的静水压力的连续分布。Theintensityofforce,thatis,theforceperunitarea,iscalledthestressandiscommonlydenotedbytheGreekletterσ.Assumingthatthestresshasauniformdistributionoverthecrosssection[seeFig.1(b)],wecanreadilyseethatitsresultantisequaltotheintensityσtimesthecross-sectionalareaAofthebar.Furthermore,fromtheequilibriumofthebodyshowninFig.1(b),wecanalsoseethatthisresultantmustbeequalinmagnitudeandoppositeindirectiontotheforceP.Hence,weobtainσ=P/A.(1)力的强度,也就是说单位面积上的力,被称为应力,通常用希腊字母σ来表示。假定应力在横截面上均匀分布[见图1(b)],那么我们可以很容易的看出它的合力等于强度σ乘以梁的横截面积A。而且,从图1上显示的物体的平衡来看,我们可以发现这个合力是跟拉力P在数值上相等,方向相反的。因此,我们得到方程(1)σ=P/A。Eq.(1)canberegardedastheequationfortheuniformstressinaprismaticbar.Thisequationshownthatstresshasunitsofforcedividedbyarea.WhenthebarisbeingstretchedbytheforceP,asshowninthefigure,theresultingstressisatensilestress;iftheforcesarereversedindirection,causingthebartobecompressed,theyarecalledcompressivestress.方程(1)用于求解在梁中均匀分布的应力问题。它表示了应力的单位是力除以面积。正如我们在图1中所看到的,当梁被力P拉伸的时候,生成的应力是拉应力;如果力的方向被颠倒,导致梁被压缩时,产生的应力被称为压应力。AnecessaryconditionforEq.(1)tobevalidisthatthestressσmustbeuniformoverthecrosssectionofthebar.ThisconditionwillberealizediftheaxialforcePactsthroughthecentroidofthecrosssection.WhentheloadPdoesnotactatthecentroid,bendingofthebarwillresult,andamorecomplicatedanalysisisnecessary.Atpresent,however,itisassumedthatallaxialforcesareappliedatthecentroidofthecrosssectionunlessspecificallystatedtothecontrary.Also,unlessstatedotherwise,itisgenerallyassumedthattheweightoftheobjectitselfisneglected,aswasdonewhendiscussingthebarinFig.1.方程(1)成立的必要条件是应力σ在梁的横截面上是均匀分布的。如果轴向力P通过横截面的形心,那么这个条件是可以实现的。如果轴向力P不通过横截面的形心,则会导致梁的弯曲,必须经过更复杂的分析。然而,目前除非特定说明,都假定所有的轴向力都通过横截面的形心。同样,除非是另外说明,一般我们不考虑物体自重,正如我们在图1中讨论的梁一样。ThetotalelongationofabarcarryinganaxialforcewillbedenotedbytheGreekletterδ[seeFig.1(a)],andtheelongationperunitlength,orstrain,isthendeterminedbytheequationε=δ/L(2).WhereListhetotallengthofthebar.Notethatthestrainεisanon-dimensionalquantity.ItcanbeobtainedaccuratelyfromEq.(2)aslongasthestrainisuniformthroughoutthelengthofthebar.Ifthebarisintension,thestrainisatensilestrain,representinganelongationorstretchingofthematerial;ifthebarisincompression,thestrainisacompressivestrain,whichmeansthatadjacentcrosssectionofthebarmoveclosertooneanother.在轴向力作用下,梁的总伸长用希腊字母δ来表示[见图1(a)],单位伸长量或者说应变将由方程(2)决定,这里L是指梁的总长度。注意,这里应变ε是一个无量纲量,只要应变在梁的长度上各处是均匀的,那么它可以通过方程(2)精确获得。如果梁被拉伸,那么得到拉应变,表现为材料的延长或者拉伸;如果梁被压缩,那么得到压应变,意味着梁的横截面将彼此更加靠近。Whenamaterialexhibitsalinearrelationshipbetweenstressandstrain,itissaidtobelinearelastic.Thisisanextremelyimportantpropertyofmanysolidmaterials,includingmostmetals,plastics,wood,concrete,andceramics.Thelinearrelationshipbetweenstressandstrainforabarintensioncanbeexpressedbythesimpleequationσ=Eε(3)inwhichEisaconstantofproportionalityknownasthemodulusofelasticityforthematerial.当一种材料的应力与应变表现出线性关系时,我们称这种材料为线弹性材料。这是许多固体材料的一个极其重要的性质,这些材料包括大多数金属,塑料,木材,混凝土和陶瓷。对于被拉伸的梁来说,这种应力与应变之间的线性关系可以用简单方程(3)σ=Eε来表示,这里E是一个已知的比例常数,即该材料的弹性模量。NotethatEhasthesameunitsasstress.ThemodulusofelasticityissometimescalledYoung’smodulus,aftertheEnglishscientistThomasYoung(1773-1829)whostudiedtheelasticbehaviorofbars.Formostmaterialsthemodulusofelasticityincompressionisthesameasintension.注意,弹性模量的单位跟应力的单位相同。在研究梁的弹性行为的英国科学家ThomasYoung(1773-1829)出现之后,弹性模量有时也被称为杨氏模量。对大多数材料而言,压缩和拉伸时的弹性模量是一样的。TranslationTherelationshipbetweenstressandstraininaparticularmaterialisdeterminedbymeansofatensiletest.Aspecimenofthematerial,usuallyintheformofaroundbar,isplacedinatestingmachineandsubjectedtotension.Theforceonthebarandtheelongationofthebararemeasuredastheloadisincreased.Thestressinthebarisfoundbydividingtheforcebythecross-sectionalarea,andthestrainisfoundbydividingtheelongationbythelengthalongwhichtheelongationoccurs.Inthismanneracompletestress-straindiagramcanbeobtainedforthematerial.一种材料的应力-应变关系可以通过一个拉伸测试来确定。材料的样品通常做成圆棒状,放置在测试仪器上然后施加拉力。随着载荷的增加,圆棒受的力和伸长量可以被测定。圆棒的应力可以通过力除以横截面积得到,应变则通过伸长量除以圆棒的长度得到。这样,我们就得到了这种材料完整的应力-应变图表。Thetypicalshapeofthestress-straindiagramforstructuralsteelisshowninFig.1,wheretheaxialstrainsareplottedonthehorizontalaxisandthecorrespondingstre