2021年中考数学模拟试题(81)(解析版)第1页共17页2021年中考数学模拟试题(满分120分,答题时间120分钟)一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的绝对值是()A.﹣2B.1C.2D.12【答案】C【解析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.2的绝对值为2.2.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.60.310⨯B.7310⨯C.6310⨯D.53010⨯【答案】C【解析】根据科学记数法的定义即可得.科学记数法:将一个数表示成10na⨯的形式,其中110a≤3.下列计算正确的是()A.a+2a=3aB.(a+b)2=a2+ab+b2C.(﹣2a)2=﹣4a2D.a•2a2=2a2【答案】A【解析】分别根据合并同类项法则、完全平方公式、单项式的乘方及单项式乘单项式法则逐一计算可得.A.a+2a=(1+2)a=3a,此选项计算正确;B.(a+b)2=a2+2ab+b2,此选项计算错误;C.(﹣2a)2=4a2,此选项计算错误;D.a•2a2=2a3,此选项计算错误.4.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.13B.14C.16D.18【答案】C第2页共17页【解析】根据题意画出树状图得出所有等情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是212=165.点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于()A.5B.3C.﹣3D.﹣1【答案】C【分析】把点P的坐标代入一次函数解析式,得出3a﹣b=2.代入2(3a﹣b)+1即可.【解析】∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,则3a﹣b=﹣2.∴6a﹣2b+1=2(3a﹣b)+1=﹣4+1=﹣36.如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°【答案】D【分析】根据等腰三角形的性质可求∠C,再根据平行四边形的性质可求∠E.【解析】∵在△ABC中,∠A=40°,AB=AC,∴∠C=(180°﹣40°)÷2=70°,∵四边形BCDE是平行四边形,第3页共17页∴∠E=70°.7.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000x=4200x−80B.3000x+80=4200xC.4200x=3000x−80D.3000x=4200x+80【答案】D【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【解析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:3000x=4200x+80.8.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【解析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,第4页共17页∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【答案】D【解析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2-4ac>0,求得4ac-b2<0,故B错误;根据对称轴方程得到b=2a,当x=-1时,y=a-b+c<0,于是得到c-a<0,故C错误;当x=-n2-2(n为实数)时,代入解析式得到y=ax2+bx+c=a(-n2-2)+b(-n2-2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣2ba<0,所以b>0,∴abc>0,故A错误;∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;第5页共17页∵﹣2ba=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141144145146学生人数(名)5212则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.4【答案】B【解析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.根据题目给出的数据,可得:平均数为:x=141×5+144×2+145×1+146×25+2+1+2=143,故A选项错误;众数是:141,故B选项正确;中位数是:141+1442=142.5,故C选项错误;方差是:S2=110[(141−143)2×5+(144−143)2×2+(145−143)2×1+(146−143)2×2]=4.4,故D选项错误.第6页共17页二、填空题(本大题有6个小题,每小题4分,共24分)11.分解因式a3﹣4a的结果是.【答案】a(a+2)(a﹣2).【解析】原式提取公因式,再利用平方差公式分解即可.原式=a(a2﹣4)=a(a+2)(a﹣2).12.若关于x,y的二元一次方程组{x+y=2,A=0的解为{x=1,y=1,则多项式A可以是(写出一个即可).【答案】答案不唯一,如x﹣y.【解析】根据方程组的解的定义,为{x=1y=1应该满足所写方程组的每一个方程.因此,可以围绕为{x=1y=1列一组算式,然后用x,y代换即可.∵关于x,y的二元一次方程组{x+y=2A=0的解为{x=1y=1,而1﹣1=0,∴多项式A可以是答案不唯一,如x﹣y.13.如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为.【答案】2【解析】依据三角形中位线定理,即可得到MN=12BC=2,MN∥BC,依据△MNE≌△DCE(AAS),即可得到CD=MN=2.∵M,N分别是AB和AC的中点,∴MN是△ABC的中位线,∴MN=12BC=2,MN∥BC,∴∠NME=∠D,∠MNE=∠DCE,第7页共17页∵点E是CN的中点,∴NE=CE,∴△MNE≌△DCE(AAS),∴CD=MN=2.14.如图,在⊙O中,点A在BĈ上,∠BOC=100°.则∠BAC=°.【答案】130.【解析】根据圆周角定理和圆内接四边形的性质即可得到结论.如图,取⊙O上的一点D,连接BD,CD,∵∠BOC=100°,∴∠D=50°,∴∠BAC=180°﹣50°=130°15.如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为.【答案】23.【分析】过点D作DE⊥BC,由平行线平分线段定理可得E是BC的中点,再根据三角函数的意义,可求出答案.【解析】过点D作DE⊥BC,垂足为E,第8页共17页∵∠ACB=90°,DE⊥BC,∴DE∥AC,又∵点D为AB边的中点,∴BE=EC=12BC=2,在Rt△DCE中,cos∠DCB=ECCD=2316.菱形的两条对角线长分别为6和8,则这个菱形的边长为.【答案】5【解析】首先根据题意画出图形,由菱形ABCD中,AC=6,BD=8,即可得AC⊥BD,OA=12AC=3,OB=12BD=4,然后利用勾股定理求得这个菱形的边长.∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=12AC=3,OB=12BD=4,∴AB=√OA2+OB2=5.即这个菱形的边长为:5.三、解答题(本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:(2a+1+a+2a2−1)÷aa−1,其中a=√5−1.【答案】见解析。【解析】原式=[2(a−1)(a−1)(a+1)+a+2(a−1)(a+1)]•a−1a=3a(a−1)(a+1)•a−1a第9页共17页=3a+1,当a=√5−1时,原式=5−1+1=3√55.18.(8分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【答案】见解析。【分析】(1)根据基本合格人数已经百分比求出总人数即可解决问题.(2)根据圆心角=360°×百分比计算即可.(3)根据中位数的定义判断即可.(4)利用样本估计总体的思想解决问题即可.【解析】(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:第10页共17页(2)“良好”所对应的扇形圆心角的度数=360°×80200=144°.(3)这次测试成绩的中位数是良好.(4)1500×40200=300(人),答:估计该校获得优秀的学生有300人.19.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.【答案】见解析。【分析】(1)连接AE,利用直径所对的圆周