2021年江苏省常州市中考数学试卷与答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2021年江苏省常州市中考数学试卷与答案2021年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.﹣3的相反数是()A.B.C.3D.﹣32.若代数式有意义,则实数x的取值范围是()A.x=﹣1B.x=3C.x≠﹣1D.x≠33.如图是某几何体的三视图,该几何体是()A.圆柱B.正方体C.圆锥D.球4.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PAB.线段PBC.线段PCD.线段PD5.若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1B.1:2C.4:1D.1:46.下列各数中与2+的积是有理数的是()A.2+B.2C.D.2﹣7.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.﹣C.0D.8.随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分。不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:a3÷a=.10.4的算术平方根是.11.分解因式:ax2﹣4a=.12.如果∠α=35°,那么∠α的余角等于°.13.如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是.14.平面直角坐标系中,点P(﹣3,4)到原点的距离是.15.若是关于x、y的二元一次方程ax+y=3的解,则a=.16.如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB=°.17.如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则tan∠OCB=.18.如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=.三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)π0+()﹣1﹣()2;(2)(x﹣1)(x+1)﹣x(x﹣1).20.(6分)解不等式组并把解集在数轴上表示出来.21.(8分)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.22.(8分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是,这组数据的众数为元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.23.(8分)将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)24.(8分)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?25.(8分)如图,在?OABC中,OA=2,∠AOC=45°,点C在y轴上,点D是BC的中点,反比例函数y=(x>0)的图象经过点A、D.(1)求k的值;(2)求点D的坐标.26.(10分)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=;当n=5,m=时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.27.(10分)如图,二次函数y=﹣x2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣1,0),点D为OC的中点,点P在抛物线上.(1)b=;(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC、BD分别交于点M、N.是否存在这样的点P,使得PM=MN=NH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQ⊥BD,垂足为Q,直线PQ与x轴交于点R,且S△PQB=2S△QRB,求点P的坐标.28.(10分)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.2021年江苏省常州市中考数学试卷答案1.C.2.D.3.A.4.B.5.B.6.D.7.A.8.B.9.a2.10.2.11.a(x+2)(x﹣2).12.55.13.5.14.5.15.1.16.30.17..18.6.19.解:(1)π0+()﹣1﹣()2=1+2﹣3=0;(2)(x﹣1)(x+1)﹣x(x﹣1)=x2﹣1﹣x2+x=x﹣1;20.解:解不等式x+1>0,得:x>﹣1,解不等式3x﹣8≤﹣x,得:x≤2,∴不等式组的解集为﹣1<x≤2,将解集表示在数轴上如下:21.解:(1)连接AC′,则AC′与BD的位置关系是AC′∥BD,故答案为:AC′∥BD;(2)EB与ED相等.由折叠可得,∠CBD=∠C'BD,∵AD∥BC,∴∠ADB=∠CBD,∴∠EDB=∠EBD,∴BE=DE.22.解:(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).23.解:(1)搅匀后从中摸出1个盒子,可能为A型(正方形)、B型(菱形)或C型(等腰直角三角形)这3种情况,其中既是轴对称图形又是中心对称图形的有2种,∴盒中的纸片既是轴对称图形又是中心对称图形的概率是;故答案为:;(2)画树状图为:共有6种等可能的情况,其中拼成的图形是轴对称图形的情况有2种:A和C,C和A,∴拼成的图形是轴对称图形的概率为.24.解:设甲每小时做x个零件,则乙每小时做(30﹣x)个零件,由题意得:=,解得:x=18,经检验:x=18是原分式方程的解,则30﹣18=12(个).答:甲每小时做18个零件,则乙每小时做12个零件.25.解:(1)∵OA=2,∠AOC=45°,∴A(2,2),∴k=4,∴y=;(2)四边形OABC是平行四边形OABC,∴AB⊥x轴,∴B的横纵标为2,∵点D是BC的中点,∴D点的横坐标为1,∴D(1,4);26.解:(1)有三个Rt△其面积分别为ab,ab和c2.直角梯形的面积为(a+b)(a+b).由图形可知:(a+b)(a+b)=ab+ab+c2整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.故结论为:直角长分别为a、b斜边为c的直角三角形中a2+b2=c2.(2)n行n列的棋子排成一个正方形棋子个数为n2,每层棋子分别为1,3,5,7,…,2n﹣1.由图形可知:n2=1+3+5+7+…+2n﹣1.故答案为1+3+5+7+…+2n﹣1.(3)①如图4,当n=4,m=2时,y=6,如图5,当n=5,m=3时,y=9.②方法1.对于一般的情形,在n边形内画m个点,第一个点将多边形分成了n个三角形,以后三角形内部每增加一个点,分割部分增加2部分,故可得y=n+2(m﹣1).方法2.以△ABC的二个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成3+2(m﹣1)个互不重叠的小三角形.以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成4+2(m﹣1)个互不重叠的小三角形.故以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成n+2(m﹣1)个互不重叠的小三角形.故可得y=n+2(m﹣1).故答案为:①6,3;②n+2(m﹣1).27.解:(1)∵二次函数y=﹣x2+bx+3的图象与x轴交于点A(﹣1,0)∴﹣1﹣b+3=解得:b=2故答案为:2.(2)存在满足条件呢的点P,使得PM=MN=NH.∵二次函数解析式为y=﹣x2+2x+3当x=0时y=3,∴C(0,3)当y=0时,﹣x2+2x+3=0解得:x1=﹣1,x2=3∴A(﹣1,0),B(3,0)∴直线BC的解析式为y=﹣x+3∵点D为OC的中点,∴D(0,)∴直线BD的解析式为y=﹣+,设P(t,﹣t2+2t+3)(0<t<3),则M(t,﹣t+3),N(t,﹣t+),H(t,0)∴PM=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,MN=﹣t+3﹣(﹣x+)=﹣t+,NH=﹣t+∴MN=NH∵PM=MN∴﹣t2+3t=﹣t+解得:t1=,t2=3(舍去)∴P(,)∴P的坐标为(,),使得PM=MN=NH.(3)过点P作PF⊥x轴于F,交直线BD于E∵OB=3,OD=,∠BOD=90°∴BD==∴cos∠OBD=∵PQ⊥BD于点Q,PF⊥x轴于点F∴∠PQE=∠BQR=∠PFR=90°∴∠PRF+∠OBD=∠PRF+∠EPQ=90°∴∠EPQ=∠OBD,即cos∠EPQ=cos∠OBD=在Rt△PQE中,cos∠EPQ=∴PQ=PE在Rt△PFR中,cos∠RPF=∴PR=PF∵S△PQB=2S△QRB,S△PQB=BQ?PQ,S△QRB=BQ?QR∴PQ=2QR设直线BD与抛物线交于点G∵﹣+=﹣x2+2x+3,解得:x1=3(即点B横坐标),x2=﹣∴点G横坐标为﹣设P(t,﹣t2+2t+3)(t<3),则E(t,﹣t+)∴PF=|﹣t2+2t+3|,PE=|﹣t2+2t+3﹣(﹣t+)|=|﹣t2+t+|①若﹣<t<3,则点P在直线BD上方,如图2,∴PF=﹣t2+2t+3,PE=﹣t2+t+∵PQ=2QR∴PQ=PR∴PE=?PF,即6PE=5PF∴6(﹣t2+t+)=5(﹣t2+2t+3)解得:t1=2,t2=3(舍去)∴P(2,3)②若﹣1<t<﹣,则点P在x轴上方、直线BD下方,如图3,此时,PQ<QR,即S△PQB=2S△QRB不成立.③若t<﹣1,则点P在x轴下方,如图4,∴PF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,PE=﹣t+﹣(﹣t2+2t+3)=t2﹣t﹣∵PQ=2QR∴PQ=2PR∴PE=2?PF,即2PE=5PF∴2(t2﹣t﹣)=5(t2﹣2t﹣

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功