【知识点总结】高一数学必修1第一章-集合与函数概念知识点总结高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.元素与集合的关系——(不)属于关系(1)集合用大写的拉丁字母A、B、C…表示元素用小写的拉丁字母a、b、c…表示(2)若a是集合A的元素,就说a属于集合A,记作a∈A;若不是集合A的元素,就说a不属于集合A,记作a?A;4.集合的表示方法:列举法与描述法。(1)列举法:将集合中的元素一一列举出来,写在大括号内表示集合的方法格式:{a,b,c,d}适用:一般元素较少的有限集合用列举法表示(2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。格式:{x|x满足的条件}例如:{x∈R|x-32}或{x|x-32}适用:一般元素较多的有限集合或无限集合用描述法表示注意:常用数集及其记法:非负整数集(即自然数集)记作:N={0,1,2,3,…}正整数集N*或N+={1,2,3,…}整数集Z{…,-3,-2,-1,0,1,2,3,…}有理数集Q实数集R有时,集合还用语言描述法和Venn图法表示例如:语言描述法:{不是直角三角形的三角形}Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x∈R|x2=-5}二、集合间的基本关系1.“包含”关系—子集定义:若对任意的x∈A,都有x∈B,则称集合A是集合B的子集,记为BA?(或B?A)注意:①BA?有两种可能(1)A是B的一部分,;(2)A与B是同一集合。②符号∈与?的区别反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A2.“相等”关系:A=B定义:如果A?B同时B?A那么A=B实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”3.真子集:如果A?B,且存在元素x∈B,但x?A,那么就说集合A是集合B的真子集,记作AB(或BA)4.性质①任何一个集合是它本身的子集。A?A②如果A?B,B?C,那么A?C③如果A?B同时B?A那么A=B5.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2.集合{a,b,c}的真子集共有个3.若集合M={y|y=x2-2x+1,x∈R},N={x|x≥0},则M与N的关系是.{xxa4.设集合A=}{12xx5.50名学生做的物理、化学两种实验,已知物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错得有4人,则这两种实验都做对的有人。6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值