第5章相交线与平行线检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.如图,已知点是直线外的一点,点在直线上,且,垂足为,,则下列语句错误的是()A.线段的长是点到直线的距离B.三条线段中,最短C.线段的长是点到直线的距离D.线段的长是点到直线的距离2.在一个平面内,任意四条直线相交,交点的个数最多为()A.7B.6C.5D.43.如图,将含有30°角的三角板的直角顶点放在相互平行的两条直线中的一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°4.(2016·福州中考)如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角5.(2015·河北中考)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°第4题图第5题图6.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等7.(2016·陕西中考)如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°8.某商品的商标可以抽象为如图所示的三条线段,其中∥,∠°,则∠的度数是()A.30°B.45°C.60°D.75°9.(2015·湖北宜昌中考)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°第9题图10.下列说法正确的个数为()(1)如果,那么、∠2与∠3互为补角;(2)如果,那么是余角;(3)互为补角的两个角的平分线互相垂直;第7题图(4)有公共顶点且又相等的角是对顶角;(5)如果两个锐角相等,那么它们的余角也相等.A.1B.2C.3D.4二、填空题(每小题3分,共24分)11.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.12.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠CEF的度数为______.13.如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为______.14.如图,与∠1构成同位角的是______,与∠2构成内错角的是______.15.如图,已知∠1=∠2,∠B=40°,则∠3=_____.16.(2016·浙江金华中考)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.第16题图17.上午九点时分针与时针互相垂直,再经过分钟后分针与时针第一次成一条直线.18.(2016·吉林中考)如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM等于度.三、解答题(共46分)19.(6分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,求∠ADE的度数.20.(8分)小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠BAE=45°,∠1=60°,小明马上运用已学的数学知识得出∠ECD的度数.你能求出∠ECD的度数吗?如果能,请写出理由.21.(6分)如图,要测量两堵墙所形成的∠的度数,但人不能进入围墙,如何测量?请你写出两种不同的测量方法,并说明其几何道理.22.(6分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.第18题图23.(6分)如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?24.(8分)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.25.(6分)如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.第5章相交线与平行线检测题参考答案1.C解析:因为PA⊥PC,所以线段PA的长是点A到直线PC的距离,选项C错误.2.B解析:在平面上画出4条直线,当这4条直线经过同一个点时,有1个交点;当3条直线经过同一个点,第4条直线不经过该点时,有4个交点;当4条直线不经过同一点时,有6个交点.3.C解析:如图,作一直线平行于已知两直线.由平行线的性质得∠1=∠3,∠2=∠4.又∠3+∠4=60°,所以∠1+∠2=60°,所以∠2=60°-∠1=60°-35°=25°.4.B解析:∠1和∠2两个角都在被截直线a和b之间,并且在第三条直线c(截线)的两旁,故∠1和∠2是直线a,b被直线c所截而成的内错角.5.C解析:如图,过点C作CM∥AB,∴50ACMBAC.∵AB∥EF,∴CM∥EF.∵CDEF,∴CDCM,90MCD∴,第5题答图∴5090140ACDACMMCD.点拨:本题考查了平行线的性质:(1)两直线平行,同位角、内错角分别相等,同旁内角互补;(2)如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条直线.6.A解析:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选A.7.B解析:∵AB∥CD,∴∠CAB+∠C=180°,∠BAE+∠AED=180°.∵∠C=50°,∴∠CAB=180°-50°=130°.∵AE平分∠CAB,∴∠BAE=∠CAB=×130°=65°.∴∠AED=180°-65°=115°.故选B.规律:在解题过程中常常由直线的位置关系得到不共顶点的角的数量关系(两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补),从而将已知与未知建立联系.8.B解析:因为∠,所以.因为∥,所以,所以.9.C解析:因为FE⊥DB,所以∠FED=90°.由∠1=50°可得∠FDE=90°-50°=40°.因为AB∥CD,由两直线平行,同位角相等,可得∠2=∠FDE=40°.10.A解析:(1)互为补角的应是两个角而不是三个角,故此说法错误;(2)应改为∠是∠的余角,故此说法错误;(3)互为邻补角的两个角的平分线互相垂直,故此说法错误;(4)根据对顶角的定义可判断此说法错误;(5)相等锐角的余角相等,故正确.综上可得只有一个正确.11.平行解析:根据在“同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行”可得答案.12.15°解析:∵ED∥BC,∴∠DEC=∠ACB=30°,∴∠CEF=∠DEF-∠DEC=45°-30°=15°.13.65°解析:∵∠1=155°,∴∠EDC=180°-∠1=25°.∵DE∥BC,∴∠C=∠EDC=25°.在△ABC中,∵∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C=90°-25°=65°.14.∠∠解析:根据同位角、内错角的定义,与∠1构成同位角的是∠,与∠2构成内错角的是∠.15.40°解析:因为∠1=∠2,所以AB∥CE,所以∠3=∠B.又∠B=40°,所以∠3=40°.16.80°解析:如图,延长DE交AB于点F.第16题答图∵BC∥DE,∴∠AFE=∠B.∵AB∥CD,∴∠B+∠C=180°.∵∠C=120°,∴∠AFE=∠B=60°.∵∠A=20°,∴∠AEF=180°-∠A-∠AFE=100°.∴∠AED=180°-∠AEF=80°.17.11416解析:分针每分钟转动6°,时针每分钟转动0.5°,设再经过分钟后分针与时针第一次成一条直线,则有,解得11416.18.30解析:∵AB∥CD,∴∠EMB=∠END=75°.又∵∠PND=45°,∴∠PNM=∠END-∠PND=75°-45°=30°.19.解:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°.∴∠BAD=12∠BAC=12×80°=40°.∵DE∥AB,∴∠ADE=∠BAD=40°.20.解:∠ECD=15°.理由:如图,过点E作EF∥AB,由平行线的性质定理,得∠BAE=∠AEF,∠ECD=∠FEC,从而∠ECD=∠1-∠BAE=60°-45°=15°.21.解:方法1:延长到,测量,利用邻补角的数量关系求.所以.方法2:延长到,延长到,测量,利用对顶角相等求.所以.22.解:因为∠FOC=90°,∠1=40°,AB为直线,所以∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3与∠AOD互补,所以∠AOD=180°-∠3=130°.因为OE平分∠AOD,所以∠2=21∠AOD=65°.23.解:∠1和∠2是直线被直线所截形成的同位角,∠1和∠3是直线被直线所截形成的同位角.24.(1)证明:∵CF平分∠DCE,∴∠1=∠2=12∠DCE.∵∠DCE=90°,∴∠1=45°.∵∠3=45°,∴∠1=∠3.∴AB∥CF(内错角相等,两直线平行).(2)解:∵∠D=30°,∠1=45°,∴∠DFC=180°-30°-45°=105°.25.解:∵∠EMB=50°,∴∠BMF=180°-∠EMB=130°.∵MG平分∠BMF,∴∠BMG=12∠BMF=65°.∵AB∥CD,∴∠1=∠BMG=65°.