解三角形中角平分线之破题策略如图,在ABC△中,D为BC边上的一点,连接AD,设ADl=,BAD,CAD,则一定有()sin+sinsin=lbcabab+.证明:ABCABDACDSSS△△△=+,111sinsinsin222bcclbl,同除以12bcl得:()sin+sinsin=lbcabab+.【例1】(2019•深圳模拟)在中ABC△,角A,B,C所对的边分别为a,b,c,120ABC,BDBC交AC于点D,且1BD,则2ac的最小值为.【解析】如图,30ABD,90CBD,根据张角定理,sin120sin30sin90=1ac,故11322ac+=,根据柯西不等式,可得21121142acac,故8323ac,当仅当2ca=时等号成立.例1图例2图【例2】(2013•福建)如图,在ABC△中,已知点D在BC边上,ADAC,22sin3BAC,32AB,3AD,则CD的长为.【解析】2221sinsin133BAD,90DAC,根据张角定理,sinsinsin90=BACBADADbc,故11223932b+=,32b=,故2233.CDADAC=+=【例3】(2015•新课标Ⅱ)ABC△中,D是BC上的点,AD平分BAC,ABD△面积是ADC△面积的2倍.(1)求sinsinBC;(2)若1AD,22DC,求BD和AC的长.【解析】(1)如图,过A作AEBC于E,12212ABDADCBDAESSDCAE△△,2BDDC,AD平分BACBADDAC,ABD△中,sinsinBDADBADB,sinsinADBADBBD,ADC△中,sinsinDCADDACC,sinsinADDACCDC;sin1sin2BDCCBD.(2)由(1)知,22222BDDC.过D作DMAB于M,作DNAC于N,AD平分BAC,DMDN,12212ABDADCABDMSSACDN△△,2ABAC,令ACx,则2ABx,BADDAC,coscosBADDAC,ABCABDACDSSS△△△=+,111sin2sinsin222bccADbAD,13cos224ADADxxx,由余弦定理可得:222(2)1(2)32214xxx,1x,1AC,BD的长为2,AC的长为1.根据张角定理:①当ab=时,1cos2ADADbca=+,(角平分线张角定理)②21()sintan2ABCSADbcAD△aa=×+³(角平分线面积问题)证明:①根据张角定理可得:sin2sinsin=ADbcaaa+,2sincossinsin=ADbcaaaa\+,1cos2ADADbca\=+②2111112sinsin2()sin=()sinsin222sin2SSbcbcADADbcADbcADbcaaaaaa==+tanADSa=,tan2ADS,当仅当cb时等号成立.【例4】(2018•安阳二模)已知如图,在ABC△中,角A,B,C所对的边分别为a,b,c,cosbCa,点M在线段AB上,且ACMBCM.若66bCM,则cosBCM()A.104B.34C.74D.64【解析】如图所示,令ACMBCM,则sin2sinsin2cos11==16CMbaa,由于cosbCa,故90B,coscosaCM,112cos6cos,解得:()2cos3舍a=-,3cos=.4a【例5】(2019•江苏模拟)在ABC中,角A,B,C所对的边分别为a,b,c,23ABC,ABC的平分线交AC于点D,1BD,则ac的最小值为.【解析】由题意得1211sinsinsin232323acac,即acac,得111ac,得11()()222224caacacacacacca ,当且仅当ac时,取等号,故答案为4.【例6】(2019•云南一模)在ABC中,内角A,B,C对的边分别为a,b,c,23ABC,BD平分ABC交AC于点D,2BD,则ABC的面积的最小值为()A.33B.43C.53D.63【解析】法一:设A,则03,233C,23ABC,BD平分ABC交AC于点D,2BD,3ABDCBD,在三角形ABD中,233ADB,根据正弦定理2sinsin()3ABBD,22sin()2sin()33sinsinAB,在三角形CBD中,3CDB,由正弦定理sin()sin()33BCBD,2sin()3sin()3BC,2sin()2sin()12333sin234sinsin()3SABBC131cos2sin2332(2cos23sin2)22221313sin2cos21cos2sin244436(2)22sin(2)16,03,52666,1sin(2)126,当sin(2)16时,即6时,min3=(26)432S,故选:B.法二:根据角平分线张角定理可得:164)(22111)(21cosacaccaaccacBDaBD,当仅当ca时等号成立,故34sin21BacS,故选B.角平分线之斯库顿定理如图,AD是ABC△的角平分线,则2··.ADABACBDCD就其位置关系而言,可记忆:中方=上积一下积.已知:在ABC△中,2··ADBDDCABAC中,AD是BAC的平分线,求证:2··ADBDDCABAC【证明】作ABC△的外接圆,延长AD交圆于E,连BE,如图12ECABEADC∽△△、·ABAEADAC即··ADAEABAC··ADADDEABAC()2··ADADDEABAC由相交弦定理得:2····BDDCADDEADBDDCABAC,注意:角平分线张角定理强调的是角度,斯库顿定理强调的是长度,斯库顿定理可以绕过求张角而直接求出三角形的各边长,通常和内角平分线定理合在一起出考题.【例7】(2019•赣榆期中)在ABC中,5AB,7AC,6BC,A的平分线AD交边BC于点D,则AD.【解析】法一:5AB,7AC,6BC,A的平分线AD交边BC于点D,由余弦定理可得:2222225671cos22565ABBCACBABBC,657BDDCABBDACDC,解得:52BD,在ABD中,由余弦定理可得:22225511052cos5()252252ADABBDABBDB.故答案为:1052.法二:利用角平分线定理657,5227BDDCBDCDABBDACDC,根据斯库顿定理:2··.ADABACBDCD代入数据得:1052AD.故答案为1052.【例8】如图,在ABC△中,2CB,3AC,5BC,求AB之长.【解析】作ACB的平分线CD交CD于D,2ACBBDCBBBDCD,,,由斯库顿定理得:2··CDACBCADDB,而CD是ACB的平分线,3355ADACADBDBDBC,223355BDBD,即2587564BDBD,26AB.