第2课时分式的混合运算01基础题知识点分式的混合运算1.计算a-1a÷(a-1a)的正确结果为(A)A.1a+1B.1C.1a-1D.-12.化简(x-1y)÷(y-1x)的结果为(B)A.1B.xyC.yxD.-13.(荆门中考)化简xx2+2x+1÷(1-1x+1)的结果是(A)A.1x+1B.x+1xC.x+1D.x-14.计算:(1)(2xy)2·1x-y-xy÷y4;解:原式=4x2y2·1x-y-xy·4y=4x2y2(x-y)-4xy2=4xyy2(x-y)=4xxy-y2.(2)(扬州中考)2xx+1-2x+6x2-1÷x+3x2-2x+1;解:原式=2xx+1-2(x+3)(x+1)(x-1)·(x-1)2x+3=2xx+1-2(x-1)x+1=2x+1.(3)[x2-4x2-4x+4+2-xx+2]÷xx-2;解:原式=[(x+2)(x-2)(x-2)2-x-2x+2]·x-2x=(x+2x-2-x-2x+2)·x-2x=8x(x+2)(x-2)·x-2x=8x+2.(4)a2-9a2+6a+9÷(1-3a).解:原式=(a+3)(a-3)(a+3)2÷a-3a=a-3a+3·aa-3=aa+3.02中档题5.(包头中考)化简(1a+1b)÷(1a2-1b2)·ab,其结果是(B)A.a2b2a-bB.a2b2b-aC.1a-bD.1b-a6.(北京中考)如果a+b=2,那么分式(a-b2a)·aa-b的值是(A)A.2B.-2C.12D.-127.(黄冈中考)计算:(a-2ab-b2a)÷a-ba=a-b.8.(咸宁中考)a,b互为倒数,代数式a2+2ab+b2a+b÷(1a+1b)的值为1.9.计算:(1)(3xy)2·13x+y-xy÷y3;解:原式=9x2y2·13x+y-xy·3y=9x2y2(3x+y)-9x2+3xyy2(3x+y)=-3x3xy+y2.(2)(x+xx2-1)÷(2+1x-1-1x+1);解:原式=x(x2-1)+x(x+1)(x-1)÷2(x2-1)+(x+1)-(x-1)(x+1)(x-1)=x3(x+1)(x-1)·(x+1)(x-1)2x2=x2.(3)a+1a·(2aa+1)2-(1a-1-1a+1).解:原式=a+1a·4a2(a+1)2-2(a+1)(a-1)=4aa+1-2(a+1)(a-1)=4a2-4a-2a2-1.10.先化简:x2-2xx2-1÷(x-1-2x-1x+1),然后请你选取一个x的值代入求值.解:原式=x(x-2)(x+1)(x-1)÷(x2-1x+1-2x-1x+1)=x(x-2)(x+1)(x-1)÷x2-2xx+1=x(x-2)(x+1)(x-1)·x+1x(x-2)=1x-1.当x=12时,原式=-2.11.先化简,再求值:(2a2a+1-14a2+2a)÷(1-4a2+14a),其中a是不等式x-4x-13>1的最大整数解.解:原式=[2a2a+1-12a(2a+1)]÷4a-4a2-14a=4a2-12a(2a+1)·4a-(2a-1)2=(2a+1)(2a-1)2a(2a+1)·4a-(2a-1)2=2-(2a-1)=21-2a.∵解不等式x-4x-13>1,得x<-2,∴不等式的最大整数解是-3.当a=-3时,原式=21-2×(-3)=27.12.(广元中考)先化简:(2x2+2xx2-1-x2-xx2-2x+1)÷xx+1,然后解答下列问题:(1)当x=3时,求分式的值;(2)原分式的值能等于-1吗?为什么?解:(1)(2x2+2xx2-1-x2-xx2-2x+1)÷xx+1=[2x(x+1)(x+1)(x-1)-x(x-1)(x-1)2]·x+1x=(2xx-1-xx-1)·x+1x=xx-1·x+1x=x+1x-1.当x=3时,原式=3+13-1=2.(2)如果x+1x-1=-1,那么x+1=-(x-1),解得x=0,当x=0时,除式xx+1=0,原分式无意义.故原分式的值不能等于-1.03综合题13.计算:1x-1x(x+1)-1(x+1)(x+2)-…-1(x+2016)(x+2017).解:原式=1x-(1x-1x+1)-(1x+1-1x+2)-…-(1x+2016-1x+2017)=1x-1x+1x+1-1x+1+1x+2-…-1x+2016+1x+2017=1x+2017.