专训3 等腰三角形中四种常用作辅助线的方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专训3等腰三角形中四种常用作辅助线的方法名师点金:几何图形中添加辅助线,往往能把分散的条件集中,使隐蔽的条件显露,将复杂的问题简单化,例如:作“三线”中的“一线”,作平行线构造等腰(边)三角形,利用截长补短法证线段和、差关系或求角的度数,利用加倍折半法证线段的倍分关系.作“三线”中的“一线”1.如图,在△ABC中,AB=AC,D是BC的中点,过点A作EF∥BC,且AE=AF,求证:DE=DF.【来源:21·世纪·教育·网】(第1题)作平行线法2.如图,在△ABC中,AB=AC,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,P,Q与直线BC相交于点D.(1)如图①,求证:PD=QD;(2)如图②,过点P作直线BC的垂线,垂足为E,当P,Q在移动的过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.21教育网(第2题)截长(补短)法3.如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°.求证:BD+DC=AB.(第3题)加倍折半法4.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠C的度数.(第4题)答案1.证明:如图,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.∵EF∥BC,∴AD⊥EF.又∵AE=AF,∴AD垂直平分EF.∴DE=DF.(第1题)2.(1)证明:如图①,过点P作PF∥AC交BC于F.∵点P和点Q同时出发,且速度相同,∴BP=CQ.∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD.又∵AB=AC,∴∠B=∠ACB.∴∠B=∠PFB.∴BP=PF.∴PF=CQ.在△PFD和△QCD中,∠DPF=∠DQC,∠PDF=∠QDC,PF=CQ,∴△PFD≌△QCD(AAS),∴PD=QD.21世纪教育网版权所有(2)解:ED的长度保持不变.理由如下:如图②,过点P作PF∥AC交BC于F.由(1)知PB=PF.∵PE⊥BF,∴BE=EF.由(1)知△PFD≌△QCD,∴FD=CD,∴ED=EF+FD=BE+CD=12BC,∴ED为定值.2·1·c·n·j·y(第2题)3.证明:如图,延长BD至E,使BE=AB,连接CE,AE.∵∠ABE=60°,BE=AB,∴△ABE为等边三角形.∴∠AEB=60°.又∵∠ACD=60°,∴∠ACD=∠AEB.∵AB=AC,AB=AE,∴AC=AE.∴∠ACE=∠AEC.∴∠DCE=∠DEC.∴DC=DE.∴AB=BE=BD+DE=BD+CD,即BD+DC=AB.(第3题)4.解:在DC上截取DE=BD,连接AE,∵AD⊥BC,BD=DE,∴AD是线段BE的垂直平分线.∴AB=AE,∴∠B=∠AEB.∵AB+BD=CD,DE=BD,∴AB+DE=CD.而CD=DE+EC,∴AB=EC,∴AE=EC.21cnjy.com故设∠EAC=∠C=x,∵∠AEB为△AEC的外角,∴∠AEB=∠EAC+∠C=2x,∴∠B=2x,∠BAE=180°-2x-2x=180°-4x.∵∠BAC=120°,∴∠BAE+∠EAC=120°,即180°-4x+x=120°,解得x=20°,则∠C=20°.21·cn·jy·com

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功