相似三角形测试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

相似三角形测试题一、选择题(40分)1.如图1,已知ABCDEF∥∥,那么下列结论正确的是()A.ADBCDFCEB.BCDFCEADC.CDBCEFBED.CDADEFAF图4图3图3图12.如图2所示,给出下列条件:①BACD;②ADCACB;③ACABCDBC;④2ACADAB.其中单独能够判定ABCACD△∽△的个数为()A.1B.2C.3D.43.如图3,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有:()A.0个B.1个C.2个D.3个4.若△ABC∽△DEF,△ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为()A.1∶4B.1∶2C.2∶1D.1∶25.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上但有限D.有无数个6.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图4,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cmB.6cmC.8cmD.10cm7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC△相似的是()8.在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图5所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A.9.5B.10.5C.11D.15.59.如图6,在RtABC△中,90ACB°,3BC,4AC,AB的垂直平分线DE交BC的A.延长线于点E,则CE的长为()A.32B.76C.256D.2图5图6图710.如图7,AB是O⊙的直径,AD是O⊙的切线,点C在O⊙上,BCOD∥,23ABOD,,则BC的长为()A.23B.32C.32D.22二、填空题(30分)11.如图8是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为cm.(结果精确到0.1cm)图8图9图1012.如图9,ABC△与AEF△中,ABAEBCEFBEAB,,,交EF于D.给出下列结论:①AFCC;②DFCF;③ADEFDB△∽△;④BFDCAF.其中正确的结论是(填写所有正确结论的序号).13.如图10,RtABC△中,90ACB°,直线EFBD∥,交AB于点E,交AC于点G,交AD于点F,若13AEGEBCGSS△四边形,则CFAD.14.如图11,锐角△ABC中,BC=6,,12ABCS两动点M、N分别在边AB、AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0),当x=,公共部分面积y最大,y最大值图11图12图1315.如图12,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是.16.将三角形纸片(△ABC)按如图13所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.三、解答题(80分)17.(本题8分)如图14,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.图1418.(本题8分)如图15,已知AB是O⊙的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连结AC.(1)求证:ABCPOA△∽△;(2)若2OB,72OP,求BC的长.图1519.(本题8分)如图16,在矩形ABCD中,点EF、分别在边ADDC、上,ABEDEF△∽△,692ABAEDE,,,求EF的长.图1620(本题10分)如图17,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论.图17图18OFDAEBCABCDEO21(本题10分)如图18,⊙O中,弦ABCD、相交于AB的中点E,连接AD并延长至点F,使DFAD,连接BC、BF.(1)求证:CBEAFB△∽△;(2)当58BEFB时,求CBAD的值22(本题12分)已知:如图19,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.(1)求证:BC=CD;(2)求证:∠ADE=∠ABD;(3)设AD=2,AE=1,求⊙O直径的长.图1923(本题12分)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:RtRtABMMCN△∽△;(2)设BMx,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当M点运动到什么位置时RtRtABMAMN△∽△,求x的值.24(本题12分)如图,在RtABC△中,906024BACCBC°,°,,点P是BC边上的动点(点P与点BC、不重合),过动点P作PDBA∥交AC于点D.(1)若ABC△与DAP△相似,则APD是多少度?(2)试问:当PC等于多少时,APD△的面积最大?最大面积是多少?(3)若以线段AC为直径的圆和以线段BP为直径的圆相外切,求线段BP的长.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功