分式求值一、着眼全局,整体代入例1已知22006ab,求bababa421212322的值.解:22222312123(44)3(2)3(2)282(2)2(2)2aabbaabbababababab.当22006ab时,原式=33(2)2006300922ab.例2已知311yx,求yxyxyxyx2232的值.解:因为0xy,所以把待求式的分子、分母同除以xy,得2211332()23232331111223522()xxyyyxxyxxyyyxxy.另解:xyyxxyxyyx3,3,311.5353233)3(22)(3)(22232xyxyxyxyxyxyxyyxxyyxyxyxyxyx.说明:已知条件及所求分式同时变形,从中找到切合点,再代值转化练一练:1.已知511yx,求yxyxyxyx2232的值.2.已知211yx,求分式yxxyyyxx33233的值3.若abba322,求分式)21)(21(222babbab的值二、巧妙变形,构造代入例3已知2520010xx,求21)1()2(23xxx的值.解:323(2)(1)1(2)(11)(11)22xxxxxxx322(2)(2)(2)542xxxxxxxx.因为2520010xx,所以原式200142005.例4已知abc,,不等于0,且0abc,求)11()11()11(baccabcba的值.解:)11()11()11(baccabcba111111111()()()3bcabcabcaabc111()()3abcabc033.练一练4.若1ab,求221111ba的值5.已知xx12,试求代数式34121311222xxxxxxx的值三、参数辅助,多元归一例5已知432zyx,求222zyxzxyzxy的值。解:设234xyzk,(0k),则2xk,3yk,4zk.所以222zyxzxyzxy=292629261694812622222222kkkkkkkk.练一练6.已知23baba,求分式abba22的值四、打破常规,倒数代入例6已知41xx,求1242xxx的值.解:因为42222221111()2142115xxxxxxx,所以1242xxx=151.练一练7.若2132xxx,求分式1242xxx的值.8.已知211222xx,求)1()1111(2xxxxx的值.9.已知51,41,31caaccbbcbaab,求bcacababc的值.