zmj-8048-23582

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

DCBAPOFEDCBA树勋中学2006——2007第二学期期中质量检测八年级数学(总分:100分;答卷时间:100分钟。)一.填空题:(2′×13)1.若反比例函数2kyx的图象在第一、三象限内,则k满足。2.数据1,2,8,5,3,9,5,4,5,4的众数是______;中位数是________。3.已知菱形ABCD的两条对角线AC、BD长分别为6cm,8cm,AH⊥BC于H点,则CD=cm;AH=cm。4.在Rt△ABC中∠C=90°且AC=9,BC=12,点E为斜边AB边上中点,连结CE,则CE=。5.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.6.已知双曲线xky经过点(-1,3),如果A(11,ba),B(22,ba)两点在该双曲线上,且1a<2a<0,那么1b2b.7.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为_______,矩形的面积为________.8.已知等腰梯形ABCD中AD∥BC,BD平分∠ABC,BD⊥DC,且梯形ABCD的周长为30cm,则AD=____.(第8题)(第10题)9.在平静的湖面上有一支红莲高出水面1m,一阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2,则水深为m。10.如图:在矩形ABCD中,AB=6,BC=8,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF=。班级_____________姓名__________________学号__________DCBAHGFEDCBA二.选择题:(3′×8)11.函数xky图像经过点P(2,3),则下列各点中在该函数图像上的是()A(-2,32)B(9,32)C(6,-1)D(-3,2)12.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A、6cmB、4cmC、3cmD、2cm13.9.由于台风的影响,一棵树在离地面m6处折断,树顶落在离树干底部m8处,则这棵树在折断前(不包括树根)长度是………()A.m8B.m10C.m16D.m1814.正方形具有而菱形不一定具有的性质是………………()A、对角线互相平分;B、对角线相等;C、对角线平分一组对角;D、对角线互相垂直15.若一组数据a1,a2,…,an的方差是5,则一组新数据,121a122a,…12na方差是()A.5B.10C.20D.5016.如图,等腰梯形ABCD中,AB∥DC,AD=BC=8,AB=10,CD=6,则梯形ABCD的面积是……………………………………………………()A、1516B、516C、1532D、171617.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是……………………().(A)一组对边平行而另一组对边不平行(B)对角线相等(C)对角线互相垂直(D)对角线互相平分18.如图5,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为……………………………………().ABCDEO↑↓←→m6m8DCBAA.8B.82C.217D.10三.解答题:(共7小题共50分)19.(5分)已知y与x+2成反比例,且当x=1时,y=2;求:(1)y与x之间的函数关系式;(2)当点(a,1)在此函数图解上,求a的值。20.(6分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问需要多少投入?21.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点.(1)求证:△ADE≌△BCF;(2)若AD=4cm,∠BOC=60°,求CF的长.22.(7分)为了从甲、乙两名学生中选拔一人参加今年六月份的全县中学生数学竞赛,每个月对他们的学习水平进行一次测验,如图是两人赛前5次测验成绩的折线统计图.(分数的末位是0或5)(1)别求出甲、乙两名学生5次测验成绩的平均数及方差.(2)如果你是他们的辅导教师,应选派哪一名学生参加这次数学竞赛.请结合所学统计知识说明理由.ABCDEOF7570656010095908085一月甲乙二月五月三月四月月份QPDCBA23.(8分)如图,一次函数y=kx+b的图像与反比例函数y=ax的图像交于A、B两点,与x轴交于点C,与y轴交于点D,已知OA=5,点B的坐标为(12,m),过点A作AH⊥x轴,垂足为H,AH=12HO(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积。24.(7分)如图:点P为正方形ABCD内一点,连接AP,并绕点A顺时针旋转90°(即图中∠PAQ=90°)到达Q点,且已知AB=6cm(1)求证:△APD≌△AQB(2)若AQ⊥BQ,∠PAD=30°求:△APQ的面积;QPDCBA25.(9分)如图:在等腰梯形ABCD中,AB∥CD,且AB=9cm,CD=6cm,点P从A点出发以2cm/s的速度向B点运动,同时点Q从C点出发以1cm/s的速度向D点运动,当一点运动到端点时,另一点也停止运动。设它们运动的时间为t秒。求:(1)当t为多少时?四边形APQD为平行四边形;(2)当t为多少时?四边形APQD为等腰梯形;(3)当t为多少时?四边形APQD与四边形PBCQ的面积相等。

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功