2021~2021学年度武汉市部分学校九年级四月调研测试数学试卷考试时间:2019年4月23日14:30~16:30一、选择题(共10小题,每小题3分,共30分)1.有理数-2的相反数是()A.2B.-2C.21D.212.式子2x在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥-2C.x≥2D.x≤-23.下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;②“从一副普通扑克牌中任意抽取一张,点数一定是3”()A.只有①正确B.只有②正确C.①②都正确D.①②都错误4.下列四个图案中,是中心对称图形的是()5.下列立体图形中,主视图是三角形的是()6.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问长木多少尺?如果设长木长x尺、绳长y尺,则可以列方程组是()A.1215.4xyxyB.1215.4xyyxC.1215.4yxyxD.1215.4yxxy7.某超市为了吸引顾客,设计了一种返现促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本超市一次性消费满200元,就可以在箱子里一次性摸出两个小球,两球数字之和记为返现金额.童威刚好消费200元,则该顾客所获得返现金额不低于30元的概率是()A.43B.32C.21D.318.若点A(x1,-3)、B(x2,-2)、C(x3,1)在反比例函数xky12的图象上,则x1、x2、x3的大小关系是()A.x1<x2<x3B.x3<x1<x2C.x2<x1<x3D.x3<x2<x19.如图,等腰△ABC中,AB=AC=5cm,BC=8cm.动点D从点C出发,沿线段CB以2cm/s的速度向点B运动,同时动点O从点B出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随时停止.设运动时间为t(s),以点O为圆心,OB长为半径的⊙O与BA交于另一点E,连接ED.当直线DE与⊙O相切时,t的取值是()A.916B.23C.34D.310.我们探究得方程x+y=2的正整数解只有1组,方程x+y=3的正整数解只有2组,方程x+y=4的正整数解只有3组,……,那么方程x+y+z=10的正整数解得组数是()A.34B.35C.36D.37二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:9的结果是__________12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是__________13.化简yxyxx816422的结果是__________14.如图,D为△ABC中BC边上一点,AB=CB,AC=AD,∠BAD=27°,则∠C=__________15.抛物线y=a(x-h)2+k经过(-1,0),(5,0)两点,则关于的一元二次方程a(x-h+1)2+k=0的解是__________16.如图,在矩形ABCD中,AB=6,BC=9,点E,F分别在BC,CD上.若BE=3,∠BGH=45°,则DF的长是__________三、解答题(共8题,共72分)17.(本题8分)计算:3a2·a4+(2a3)2-7a618.(本题8分)如图,AB∥CD,EF分别交AB,CD于点G,H,∠BGH,∠DHF的平分线分别为GM,HN,求证:GM∥HN19.(本题8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,诵读经典”活动,学习随机抽查了部分学生,对他们每天的课外阅读时间进行调查,并将调查统计的结果分为四类:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类,收集的数据绘制如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:各类学生人数条形统计图各类学生人数扇形统计图(1)这次共抽取了_________名学生进行调查统计,扇形统计图中D类所对应的扇形圆心角大小为_________(2)将条形统计图补充完整(3)如果该校共有2000名学生,请你估计该校C类学生约有多少人?20.(本题8分)如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(2,1)、B(5,4)、C(1,8)都是格点(1)直接写出△ABC的形状(2)要求在下图中仅用无刻度的直尺作图:将△ABC绕点A顺时针旋转角度α得到△AB1C1,α=∠BAC,其中B,C的对应点分别为B1,C1,操作如下:第一步:找一个格点D,连接AD,使∠DAB=∠CAB第二步:找两个格点C1,E,连接C1E交AD于B1第三步:连接AC1,则△AB1C1交即为所做出的图形请你按步骤完成作图,并直接写出D、C1、E三点的坐标21.(本题8分)如图,在等腰△ABC中,AB=AC,AD是中线,E为边AC的中点,过B,D,E三点的⊙O交AC于另一点F,连接BF(1)求证:BF=BC(2)若BC=4,AD=34,求⊙O的直径22.(本题10分)某公司计划购买A、B两种计算器共100个,要求A种计算器数量不低于B种的41,且不高于B种的31.已知A、B两种计算器的单价分别是150元/个、100元/个,设购买A种计算器x个(1)求计划购买这两种计算器所需费用y(元)与x的函数关系式(2)问该公司按计划购买者两种计算器有多少种方案?(3)由于市场行情波动,实际购买时,A种计算器单价下调了3m(m>0)元/个,同时B种计算器单价上调了2m元/个,此时童威购买这两种计算器所需最少费用为12150元,求m的值23.(本题10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=n1BE,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE(1)求证:OF=OG(2)用含有n的代数式表示tan∠OBG的值(3)若BP=2,PD=1,若∠GEC=90°,直接写出n的值24.(本题12分)已知抛物线y=x2+bx+c与x轴交于点A(2,-3)(1)如图,过点A分别向x轴,y轴作垂线,垂足分别为B,C,得到矩形ABOC,且抛物线经过点C①求抛物线的解析式②将抛物线向左平移m(m>0)个单位,分别交线段OB,AC于D,E两点.若直线DE刚好平分矩形ABOC的面积,求m的值(2)将抛物线平移,使点A的对应点为A1(2-n,3b),其中n≥1.若平移后的抛物线仍然经过点A,求平移后的抛物线顶点所能达到最高点时的坐标