熔体的性质

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二节熔体的性质一、粘度粘度的含义、粘度与温度的关系、粘度与组成的关系二、表面张力表面张力的含义、表面张力与温度的关系、表面张力与组成的关系一、粘度粘度是流体(液体或气体)抵抗流动的量度。当液体流动时:F=ηSdv/dx(3-1)式中F―两层液体间的内摩擦力;S―两层液体间的接触面积;dv/dx―垂直流动方向的速度梯度;η―比例系数,称为粘滞系数,简称粘度。因此,粘度物理意义是指单位接触面积、单位速度梯度下两层液体间的内摩擦力。粘度单位是Pa·s(帕·秒)。1Pa·s=1N·s/m2=10dyne·s/cm2=10P(泊)或1dPa·s(分帕·秒)=1P(泊)。粘度的倒数称液体流动度ф,即ф=1/η。影响熔体粘度的主要因素是温度和化学组成。硅酸盐熔体在不同温度下的粘度相差很大,可以从10-2变化至1015Pa·s;组成不同的熔体在同一温度下的粘度也有很大差别。在硅酸盐熔体结构中,有聚合程度不同的多种聚合物交织而成的网络,使得质点之间的移动很困难,因此硅酸盐熔体的粘度比一般液体高得多,如表3-3所示。表3-3几种熔体的粘度熔体温度(℃)粘度(Pa·s)水200.001006熔融NaCI8000.00149钠长石14001778080%钠长石十20%钙长石14004365瓷釉14001585粘度的测定:硅酸盐熔体的粘度相差很大,从10-2~1015Pa·s,因此不同范围的粘度用不同方法测定.107~1015Pa·s:拉丝法。根据玻璃丝受力作用的伸长速度来确定。10~107Pa·s:转筒法。利用细铂丝悬挂的转筒浸在熔体内转动,悬丝受熔体粘度的阻力作用扭成一定角度,根据扭转角的大小确定粘度。100.5~1.3×105Pa·s:落球法。根据斯托克斯沉降原理,测定铂球在熔体中下落速度求出。小于10-2Pa·s:振荡阻滞法。利用铂摆在熔体中振荡时,振幅受阻滞逐渐衰减的原理测定。1.粘度一温度关系(1)弗仑格尔公式ф=A1e-△u/kTη=1/ф=A2e△u/kTlogη=A+B/T(3-2)式中△u――质点粘滞活化能;k――波尔兹曼常数;T――绝对温标;A1、A2、A--与熔体组成有关的常数。但这个公式假定粘滞活化能只是和温度无关的常数,所以只能应用于简单的不缔合的液体或在一定温度范围内缔合度不变的液体。对于硅酸盐熔体在较大温度范围时,斜率会发生变化,因而在较大温度范围内以上公式不适用。如图3-3是钠钙硅酸盐玻璃熔体粘度与温度的关系。图3-3钠钙硅酸盐玻璃熔体粘度与温度的关系0.40.61.00.81.21296301600200010001200800600Logη1/T10-3(K-1)(2)VFT公式(Vogel-Fulcher-Tammann公式)(3-3)式中A、B、T0――均是与熔体组成有关的常数。0lgTTBA3)特征温度图3-4某些熔体的粘度-温度曲线a.应变点:粘度相当于4×1013Pa·s的温度,在该温度,粘性流动事实上不复存在,玻璃在该温度退火时不能除去其应力。b.退火点(Tg):粘度相当于1012Pa·s的温度,是消除玻璃中应力的上限温度,也称为玻璃转变温度。c.变形点:粘度相当于1010~1010.5Pa·s的温度,是指变形开始温度,对应于热膨胀曲线上最高点温度,又称为膨胀软化点。d.Litteleton软化点:粘度相当于4.5×106Pa·s的温度,它是用0.55~0.75mm直径,23cm长的玻璃纤维在特制炉中以5℃/min速率加热,在自重下达到每分钟伸长一毫米时的温度。e.操作点:粘度相当于104Pa·s时的温度,是玻璃成形的温度。f.成形温度范围:粘度相当于103~107Pa·s的温度。指准备成形操作与成形时能保持制品形状所对应的的温度范围。g.熔化温度:粘度相当于10Pa·s的温度。在此温度下,玻璃能以一般要求的速度熔化。玻璃液的澄清、均化得以完成。2.粘度——组成关系(1)O/Si比硅酸盐熔体的粘度首先取决于硅氧四面体网络的聚合程度,即随O/Si比的上升而下降,见表3-4。熔体的分子式O/Si比值结构式[SiO4]连接形式1400℃粘度值(Pa·s)SiO22∶1[SiO2]骨架状109Na2O·2SiO22.5∶1[Si2O5]2-层状28Na2O·SiO23∶1[SiO3]2-链状1.62Na2O·SiO24∶1[SiO4]4-岛状1表3-4熔体中O/Si比值与结构及粘度的关系(2)一价碱金属氧化物通常碱金属氧化物(Li2O、Na2O、K2O、Rb2O、Cs2O)能降低熔体粘度(图3-5)。这些正离子由于电荷少、半径大、和O2-的作用力较小,提供了系统中的“自由氧”而使O/Si比值增加,导致原来硅氧负离子团解聚成较简单的结构单位,因而使活化能减低、粘度变小。图3-5网络改变剂氧化物对熔融石英粘度的影响□=Li2O-SiO21400℃;○=K2O-SiO21600℃;△=BaO-SiO21700℃132046875901020304050Logη(η:P)金属氧化物(mol%)图3-6Na2O-Si2O系统中Na2O含量对粘滞活化能△u的影响1020304050607066100134168202236Δu(kJ/mol)Na2O(mol%)图3-7简单碱金属硅酸盐系统(R2O-SiO2)中碱金属离子R+对粘度的影响0.1110100100010000010203040KKLiLiNaNaη(P)R2O(mol%)在简单碱金属硅酸盐系统中,碱金属离子R+对粘度的影响与本身含量有关(图3-7)。1)当R2O含量较低时(O/Si较低),熔体中硅氧负离子团较大,对粘度起主要作用的是四面体[SiO4]间的键力。这时,加入的正离子的半径越小,降低粘度的作用越大,其次序是Li+Na+K+Rb+Cs+。这是由于R+除了能提供“游离”氧,打断硅氧网络以外,在网络中还对→Si-O-Si←键有反极化作用,减弱了上述键力。Li+离子半径最小,电场强度最强,反极化作用最大,故它降低粘度的作用最大。2)当熔体中R2O含量较高(O/Si比较高)时,则熔体中硅氧负离子团接近最简单的[SiO4]形式,同时熔体中有大量O2-存在,[SiO4]四面体之间主要依靠R-O键力连接,这时作用力矩最大的Li+就具有较大的粘度。在这种情况下,R2O对粘度影响的次序是Li+Na+K+。(3)二价金属氧化物二价碱土金属氧化物对粘度影响:一方面和碱金属离子一样,能使硅氧负离子团解聚使粘度降低;另一方面,它们的电价较高而半径又不大,因此其离子势Z/r较R+的大,能夺取硅氧负离子团中的O2-来包围自己,导致硅氧负离子团聚合。综合这两个相反效应,R2+降低粘度的次序是Ba2+>Sr2+>Ca2+>Mg2+,系统粘度次序为Ba2+Sr2+Ca2+Mg2+见图3-8。图3-8二价阳离子对硅酸盐熔体粘度的影响SiMgZnCaSrBaPbNiCaMnCuCd2040608010000.501.001.50η(P)离子半径(A)(4)高价金属氧化物一般说来,在熔体中引入SiO2、Al2O3、ZrO2、ThO2等氧化物时,因这些阳离子电荷多,离子半径又小,作用力大,总是倾向于形成更为复杂巨大的复合阴离子团,使粘滞活化能变大,从而导致熔体粘度增高。(5)阳离子配位数--硼反常现象在硅酸盐Na2O-SiO2系统中:1)当B2O3含量较少时,Na2O/B2O31,结构中”游离”氧充足,B3+以[BO4]四面体状态加入到[SiO4]四面体网络,将断开的网络重新连接起来,结构趋于紧密,粘度随含量升高而增加;2)当Na2O/B2O3约为1时(B2O3含量约为15%),B3+形成[BO4]四面体最多,粘度达到最高点;3)B2O3含量继续增加,较多量的B2O3引入使Na2O/B2O31,“游离”氧不足,B3+开始处于层状[BO3]中,使结构趋于疏松,粘度又逐步下降。图3-916Na2O·xB2O3·(84-x)SiO2系统玻璃中560℃时的粘度变化151413121110048121620242832Lgη(η:P)B2O3(mol%)(6)混合碱效应熔体中同时引入一种以上的R2O或RO时,粘度比等量的一种R2O或RO高,称为“混合碱效应”,这可能和离子的半径、配位等结晶化学条件不同而相互制约有关。(7)离子极化的影响离子间的相互极化对粘度也有重要影响。由于极化使离子变形,共价键成分增加,减弱了Si-O键力,温度一定时,引入等量的具有18电子层结构的二价副族元素离子Zn2+、Cd2+、Pb2+等较引入含8电子层结构的碱土金属离子更能降低系统的粘度;当粘度一定时,系统的温度会更低。18Na2O·12RO·70SiO2玻璃,当η=1012Pa·s时温度是8电子结构T(℃)18电子结构T(℃)四周期CaO533ZnO513五周期SrO511CdO487六周期BaO482PbO422(8)其它化合物CaF2能使熔体粘度急剧下降,其原因是F-的离子半径与O2-的相近,较容易发生取代,但F-只有一价,将原来网络破坏后难以形成新网络,所以粘度大大下降。稀土元素氧化物如氧化镧、氧化铈等,以及氯化物、硫酸盐在熔体中一般也起降低粘度的作用。综上所述,加入某一种化合物所引起粘度的改变既取决于加入的化合物的本性,也取决于原来基础熔体的组成。二、表面张力表面张力的物理意义为:作用于表面单位长度上与表面相切的力,单位是N/m。通常将熔体与另一相接触的相分界面上(一般另一相指空气)在恒温、恒容条件下增加一个单位新表面积时所作的功,称为比表面能,简称表面能,单位为J/m2,简化后其因次为N/m。熔体的表面能和表面张力的数值与因次相同(但物理意义不同),熔体表面能往往用表面张力来代替。表面张力以σ表示之。水的表面张力约为70×10-3N/m左右,熔融盐类为100N/m左右,硅酸盐熔体的表面张力通常波动在(220~380)×10-3N/m范围内,与熔融金属的表面张力数值相近,随组成与温度而变化.见表3-5。表3-5熔体的表面张力σ(×10-3N/m)熔体温度(℃)σ熔体温度(℃)σH2O2572SiO21800307NaCl1080951300290B2O390080FeO1420585P2O5100060PbO1000128Na2O1300290钠钙硅酸盐熔体(Na2O∶CaO∶SiO2=16∶10∶74)1000316Li2O1300450Al2O321505501300380钠硼硅酸盐熔体(Na2O∶B2O3∶SiO2=20∶10∶70)1000265ZrO21300350瓷器中玻璃相1000320GeO21150250瓷釉1000250~2801.表面张力与温度的关系一般规律:温度升高,质点热运动增加,体积膨胀,相互作用变为松弛,表面张力降低。在高温及低温区,表面张力均随温度的增加而减小,二者几乎成直线关系,即:σ=σ0(1-bT)(3-5)式中b——与成分有关的经验常数;σ0——一定条件下开始的表面张力值;T——温度变动值。图3-10钾铅硅酸盐玻璃的表面张力与温度的关系600700800300400500600700800900表面张力σ(dyne/cm)温度(℃)温度反常现象对PbO-SiO2系统玻璃,其表面张力随温度升高而略微变大,温度系数为正值。一般含有表面活性物质的系统也出现此正温度系数,这可能与在较高温度下出现“解吸”过程有关。对硼酸盐熔体,随着碱含量减少,表面张力的温度系数由负逐渐接近零值,当碱含量再减少时dσ/dT也将出现正值。这是由于温度升高时,熔体中各组分的活动能力增强,扰乱了熔体表面[BO3]平面基团的整齐排列,致使表面张力增大。B2O3熔体在1000℃左右的dσ/dT≈0.04×10-3N/m。2.表面张力与组成的关系结构类型相同的离子晶体,其晶格能越大,则其熔体的表面张力也越大;其单位晶胞边长越小,熔体的表面张力也越大。总的说来,熔体内部质点之间的相互作用力愈大,则表面张力也愈大。O/Si比一般说O/Si愈小,熔体中复合阴离子

1 / 36
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功