数字图像处理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数字图像处理实验报告学校:河北建筑工程学院院系:电气工程学院班级:电子132班姓名:杨腾腾学号:2013315235第二章图像处理基本知识1.实验目的:(1)了解图像采集的硬件设备,获取一幅自己的头像(*.jpg),作为后续实验的一个图像源;(2)练习MATLAB的一般使用,为其它几个实验做准备。2.实验内容:(1)利用图像采集系统获取图像;(2)编写一个MATLAB程序对获取的图像文件(*.jpg)。将彩色图像转换为灰度图像。用imhist计算和显示灰度的统计特性,求其均值、标准差,并将图像反白。更详细的操作请参考讲解MATLAB使用的相关书籍或者该软件的在线帮助文件。3.实验要求:编写一完整的MATLAB程序。这里完整的MATLAB程序是指该程序应有一个用户界面窗口,读入的图像文件应显示在界面窗口里,在界面窗口中可以设置几个按钮,分别完成对所显示的图像进行上面(2)中所要求的操作。请保留该程序,后面的实验所编的程序都要求与此程序集成起来,提供一个统一的操作界面。4.实验程序:I=imread('C:\0.jpg');subplot(2,2,1);imshow(I);J=rgb2gray(I);subplot(2,2,2);imshow(J);subplot(2,2,3);imhist(J);Ave=mean2(J)SD=std2(double(J))s=size(J);all_white=255*ones(s(1),s(2));all_white_uint8=uint8(all_white);K=imsubtract(all_white_uint8,J);subplot(2,2,4);imshow(K);imwrite(K,'C:\0_iverse.jpg')实验结果:Ave=105.655SD=51.94425.实验总结:通过本次实验,我初步了解了MATLAB的使用方法,通过命令式的语言来执行程序,简洁快速,同时也了解到它在数学和图像处理方面的重要应用,在今后的学习后会充分发挥它的作用!第四章图像变换与二维数字滤波1.实验目的:(1)了解图像正逆变换的原理。(2)理解图像变换的系数特点(3)掌握常用图像变换的实现过程。(4)掌握图像的频谱分析方法。(5)了解图像变换在图像数据压缩等方法面的应用。(6)掌握二维数字滤波器的作用以及在图像滤波中的实际应用。2.实验内容:(1)在MATLAB环境中,进行图像的离散傅立叶变换和离散余弦变换,观察图像的频谱并减少DCT系数,观察重建信号和误差信号,理解正交变化在压缩编码中的应用。(2)在MATLAB环境中,进行图像的离散小波变换,观察图像的近似图像的各方向的细节图像,观察重建图像,理解小波变换在图像特征检测中的应用。3.实验要求:(1)说明实验采用的正交变换原理(2)分析重建图像、误差图像、变换系数的关系。(3)通过实验结果说明三种变换的优点以及各自适应的应用场合。(4)分析图像的二维FIR滤波的结果和各种设计法的优缺点。4.实验程序:(1)傅里叶变换:I=imread('C:\0.jpg');J=rgb2gray(I);subplot(2,2,1);imshow(J);F1=fft2(J);subplot(2,2,2);imshow(log(abs(F1)+1),[010]);F2=fftshift(F1);subplot(2,2,3);imshow(log(abs(F2)+1),[010]);实验结果:(2)DCT变换:I=imread('C:\0.jpg');J=rgb2gray(I);subplot(1,2,1),imshow(J);K=dct2(J);subplot(1,2,2),imshow(log(abs(K))+1,[010]);实验结果:5.实验总结:通过上机操作我知道了,正交变换和二维数字滤波广泛应用在图像增强、图像复原、特征提取、图像编码与压缩及形状分析方面。二维DCT常用于二维信号处理,典型应用是对于静止图像和运动图像进行性能优良的有损数据严肃。第五章图像编码与压缩1.实验目的:(1)了解图像的压缩编码原理。(2)掌握常用的图像压缩算法。2.实验内容:(1)利用变换编码压缩图像信息。(2)计算压缩算法的性能。3.实验要求:(1)说明压缩原理与算法。(2)原始图像和压缩重构图像。(3)计算压缩性能,说明为什么同一压缩算法对不同的图像压缩效果不同。(4)心得和体会。4.实验程序:F=imread('C:\0.jpg');figure(1);imshow(F);G=rgb2gray(F);dctG=dct2(G);figure(2);imshow(log(abs(dctG)),[]);T1=5;T2=50;dctG(abs(dctG)T1)=0;idctF1=idct2(dctG);figure(3);imshow(idctF1,[0255]);dctG(abs(dctG)T2)=0;idctF2=idct2(dctG);figure(4);imshow(idctF2,[0255]);[MN]=size(G);MSE1=sun(sum((idctF1-double(G)).^2))/(M*N)MSE1=sun(sum((idctF2-double(G)).^2))/(M*N)实验结果:5.实验总结:通过上机操作对DCT变化更加的了解了。通过二维DCT变换后,对于低阈值压缩(T1=5),图像损失较小,但是对于较高的阈值压缩(50),图像稍显模糊。实际应用中如果要求图像质量高的当然要用压缩率比较低的,保证不失真,对于质量要求不高的,可以采取压缩率较大的,在不影响图像判断上,降低图像的存储空间。第六章图像增强1.实验目的:(1)熟悉并学会使用MATLAB中图像增强的相关函数和photoshop操作(2)掌握图像灰度修正平滑去噪锐化加强边缘和轮廓的方法,并编程实现2.实验内容:(1)熟悉并学会使用MATLAB中图像增强的相关函数和photoshop操作(2)掌握图像灰度修正平滑去噪锐化加强边缘和轮廓的方法,并编程实现3.实验要求:(1)选择利用MATLAB图像处理工具箱实现图像灰度修正图像平滑图像锐化的方法。(2)列出上述图像处理的程序。(3)记录灰度修正图像平滑图像锐化的图像,Photoshop图像增强的步骤和相应页面。(4)心得和体会。4.实验程序:(1)图像的归一化直方图:I=imread('C:\0.jpg');J=rgb2gray(I);subplot(2,2,1);imshow(J);N=numel(J);Pr=imhist(J)/N;k=0:255;subplot(2,2,2);stem(k,Pr)实验结果:(2)线性变换:I=imread('C:\0.jpg');J=rgb2gray(I);imshow(J);figure,imhist(J);M=imadjust(J,[0.3,0.7],[]);figure,imshow(M);figure,imhist(M);实验结果:(3)直方图均衡化:I=imread('C:\0.jpg');J=rgb2gray(I);M=histeq(J);imshow(J);figure,imhist(J);figure,imshow(M);figure,imhist(M);实验结果:(4)对椒盐噪声的平滑处理:I=imread('C:\0.jpg');J=rgb2gray(I);imshow(J,[]);f=imnoise(J,'salt&pepper',0.04);figure,imshow(f);h0=1/9.*[111111111];h1=[0.10.10.1;0.10.20.1;0.10.10.1];h2=1/16.*[121;242;121];h3=1/8.*[111;101;111];g0=filter2(h0,f);g1=filter2(h1,f);g2=filter2(h2,f);g3=filter2(h3,f);figure,imshow(g0,[]);figure,imshow(g1,[]);figure,imshow(g2,[]);figure,imshow(g3,[]);实验结果:(5)对椒盐噪声进行中值滤波:I=imread('C:\0.jpg');J=rgb2gray(I);imshow(J);M=imnoise(J,'salt&pepper',0.04);figure,imshow(M);K=medfilt2(M);figure,imshow(K);实验结果:(6)图像的锐化处理:I=imread('C:\0.jpg');J=rgb2gray(I);imshow(J);BW=edge(J,'roberts',0.1);figure,imshow(BW);实验结果:(7)拉普拉斯算子对图像的均衡化处理:I=imread('C:\0.jpg');J=rgb2gray(I);imshow(J);H=[0-10;-14-1;0-10];J=imfilter(J,H);figure,imshow(J);figure,imhist(J);K=imadjust(J,[0.00.2],[]);figure,imhist(K);figure,imshow(K);实验结果:5.实验总结通过此次上机我对图像增强更加的了解了,和它与图像复原的区别。图像增强是指对图像的某些特征如边缘、轮廓、对比度进行强调,以便于显示、观察或进一步分析处理。本次实验中涉及到线性变换的灰度变换,可以使图像动态范围增大,图像对比度扩展,通过第一个实验可以观察到图片的对比度提高了,没有想原图那样平淡。实验二是对有噪声的图像进行平滑处理,已达到去除噪声的目的,通过空间域分析,不同的模板处理后的效果是不一样的。实验三是通过拉普拉斯算子和罗伯茨算子来对图像进行锐化处理,增强图像边缘和轮廓。这对于以后的学习会有很大的帮助,以后我会多多关注图像处理的技术,以及学习更多相关的知识。第七章图像复原1.实验目的(1)了解图像复原的原理。(2)掌握常用图像复原方法。2.实验内容(1)利用维纳滤波对有噪声模糊图像进行复原(2)比较直接维纳滤波设置信噪比参数设置噪声和自相关函数这三种情况下的图像复原效果。3.实验要求(1)说明图像复原的基本原理和算法(2)原始图像和复原后重建图像(3)对于同一幅图像,比较直接维纳滤波设置信噪比参数设置噪声和自相关函数这三种情况下的图像复原效果4.实验程序:I=imread('C:\zhaopian\20140315210314.jpg');J=rgb2gray(I);len=28;theta=14;PSF=fspecial('motion',len,theta);blurred=imfilter(I,PSF,'circular','conv');v=0.02;Noisy=imnoise(blurred,'gaussian',0,v);len=9;theta=12;SF=fspecial('gaussian',len,theta);UNDERPSF=ones(size(PSF)-4);[J1P1]=deconvblind(Noisy,UNDERPSF);figure,subplot(2,2,1);imshow(J1);OVERPSF=padarray(UNDERPSF,[44],'replicate','both');[J2P2]=deconvblind(Noisy,OVERPSF);subplot(2,2,2);imshow(J2);INITPSF=padarray(UNDERPSF,[22],'replicate','both');[J3P3]=deconvblind(Noisy,INITPSF);subplot(2,2,3);imshow(J3);实验结果:5.实验总结:通过上机操作知道了,图像复原的目的就是为了使受损的图像恢复到原来的样子,改善图像的质量,不会失真严重,现代的图像复原方法有逆滤波复原、约束

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功