1.2.2组合

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?236A甲、乙;甲、丙;乙、丙3情境创设从已知的3个不同元素中每次取出2个元素,并成一组问题2从已知的3个不同元素中每次取出2个元素,按照一定的顺序排成一列.问题1排列组合有顺序无顺序组合定义:一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.排列定义:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.共同点:都要“从n个不同元素中任取m个元素”不同点:排列与元素的顺序有关,而组合则与元素的顺序无关.概念讲解组合和排列有什么共同和不同点?判断下列问题是组合问题还是排列问题?(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票?有多少种不同的火车票价?组合问题排列问题(3)10名同学分成人数相同的数学和英语两个学习小组,共有多少种分法?组合问题(4)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次?组合问题(5)从4个风景点中选出2个游览,有多少种不同的方法?组合问题(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?排列问题组合问题组合是选择的结果,排列是选择后再排序的结果.从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.mnC概念讲解组合数:注意:是一个数,应该把它与“组合”区别开来.mnC联系。有什么区别和和排列数探究:组合数mnmnAC我来从具体问题分析:组合排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb你发现了什么?1.(1)写出从a,b,c,d四个元素中任取三个元素的排列数。(2)写出从a,b,c,d四个元素中任取三个元素的组合数。根据分步计数原理,得到:因此:一般地,求从个不同元素中取出个元素的排列数,可以分为以下2步:nm第1步,先求出从这个不同元素中取出个元素的组合数.mnCnm第2步,求每一个组合中个元素的全排列数.mnAmmmmnmnACA!121mmnnnnAACmmmnmn这里,且,这个公式叫做组合数公式.*Nnm、nm的区别和联系。和排列数组合数mnmnAC组合数公式:(1)(2)(1)!mmnnmmAnnnnmCAm从n个不同元中取出m个元素的排列数mmmnmnCAA!!()!mnnCmnm01.nC我们规定:概念讲解例1:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛,按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(1)这位教练从这17名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?例2:(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?问题1计算310710CC;②①猜想mnnmnCC-=猜想mnmnmnCCC11+-=+97100C练:问题2、一个口袋内装有7个不同的白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,其中含有1个黑球,共有多少种取法?(3)从口袋内取出3个球,没有黑球,共有多少种不同的取法?组合数的两个性质性质1mnnmnCC-=性质2mnmnmnCCC11+-=+规定:10=nC注:1公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与原组合数上标较大的相同的一个组合数.2此性质的作用:恒等变形,简化运算.性质应用1、计算9710098100CC+2、解方程4+=x252x25CC3、计算913261504CCCC++++1.方程的解集为()2.式子的值的个数为()A.1B.2C.3D.43.化简4.832828xxCC94DC9,、、、4、BA)(*1710210NmCCmm________8919mmmCCC__________C,Cn208n10n的值为则若C5、=______________nn13n172nCC3+-+6、=_____________7862CCC858++练习7、=________2100252CCCC423++++__n___m,10,608=,=则、若mnmnCA___n,98771=则、若nnnCCC1121.....10nmnnmnnnnnnnCCCCC、求证:作业.计算:198200(1)C;329999(2)CC;332898(3).2CCC0129456131CCCC()计算;1121.nnnnnnnnnmnmCCCCC+(3)求证:2、2222234102CCCC()计算;,361512xxxxCCC:已知4252xxxxCC求一、等分组与不等分组问题例3、6本不同的书,按下列条件,各有多少种不同的分法;(1)分给甲、乙、丙三人,每人两本;(2)分成三份,每份两本;(3)分成三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙3人,每人至少一本;(6)分给5个人,每人至少一本;(7)6本相同的书,分给甲乙丙三人,每人至少一本。练习:(1)今有10件不同奖品,从中选6件分成三份,二份各1件,另一份4件,有多少种分法?(2)今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?解:(1)(2)641111062123150CCCC62221064218900CCCC例4、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()(A)种(B)种(C)种(D)种38C38A39C311C二、不相邻问题插空法三、混合问题,先“组”后“排”例5对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?解:由题意知前5次测试恰有4次测到次品,且第5次测试是次品。故有:种可能。576441634ACC练习:1、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法______种.解:采用先组后排方法:312353431080CCCA2、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?解法一:先组队后分校(先分堆后分配)223364540CCA解法二:依次确定到第一、第二、第三所学校去的医生和护士.5401)()(24122613CCCC四、分类组合,隔板处理例6、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?分析:问题相当于把个30相同球放入6个不同盒子(盒子不能空的)有几种放法?这类问可用“隔板法”处理.解:采用“隔板法”得:5294095C练习:1、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?2、从一楼到二楼的楼梯有17级,上楼时可以一步走一级,也可以一步走两级,若要求11步走完,则有多少种不同的走法?课堂练习:2、从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为。32328778.()()ACCCC32328778.()()BCCCC32328778.CCCCC3218711.DCCC3、要从8名男医生和7名女医生中选5人组成一个医疗队,如果其中至少有2名男医生和至少有2名女医生,则不同的选法种数为()4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,则甲、乙两人不都入选的不同选法种数共有()2353.ACA3353.2BCA35.CA233535.2DCAA1、把6个学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有种。99CD5、在如图7x4的方格纸上(每小方格均为正方形)(1)其中有多少个矩形?(2)其中有多少个正方形?课堂练习:

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功