用于计算机视觉应用的GPU优化立体图像匹配技术(IJMECS-V7-N5-5)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

I.J.ModernEducationandComputerScience,2015,5,37-42PublishedOnlineMay2015inMECS()DOI:10.5815/ijmecs.2015.05.05Copyright©2015MECSI.J.ModernEducationandComputerScience,2015,5,37-42GPUOptimizedStereoImageMatchingTechniqueforComputerVisionApplicationsKajalSharmaChosunUniversity,KoreaEmail:kajal175@gmail.comAbstract—Inthispaper,weproposeagraphicsprocessingunit(GPU)basedmatchingtechniquetoperformfastfeaturematchingbetweendifferentimages.Loweproposedascaleinvariantfeaturetransformalgorithmthathasbeensuccessfullyusedinvariousfeaturematchingapplicationssuchasstereovision,objectrecognition,andmanyothers,butthisalgorithmiscomputationallyintensive.Inordertosolvethisproblem,weproposeamatchingtechniqueoptimizedforgraphicsprocessingunitstoperformcomputationwithlesstime.WehaveappliedGPUoptimizationforthefastcomputationofkeypointstomakeoursystemfastandefficient.Theproposedmethodusedself-organizingmapfeaturematchingtechniquetoperformefficientmatchingbetweendifferentimages.Theexperimentsareperformedonvariousimagestoexaminetheperformanceofthesystemindiverseconditionssuchasimagerotation,scaling,andblurringconditions.Theexperimentalresultsrevealthattheproposedalgorithmoutperformstheexistingfeaturematchingmethodsresultingintofastfeaturematchingwiththeoptimizationofgraphicsprocessingunit.IndexTerms—Featurematching,stereovision,self-organizingmap,graphicsprocessingunitI.INTRODUCTIONFeatureselectionandmatchingisakeycomponentinmanycomputervisiontaskssuchaspathfinding,obstacledetection,navigation,stereovision,andmanyothersapplications[1-6].Severalstrategiesofkeypointdetectorshavebeenproposedintheliterature[7-8].SchmidandMohr[9]usedHarriscornersasinterestpointsinimagerecognitionproblemstomatchthefeaturesagainstalargedatabaseofimages.Thismethodallowsfeaturestobematchedunderarbitraryorientationchanges,butitissensitivetoimagescalechanges.Lowe[10]proposedthescaleinvariantfeaturetransform(SIFT)descriptorfortheextractionofinterestpointsinanimagethatisinvarianttobothscaleandrotation.TheSIFTtechniqueuseda128-dimensionalvectortodescribetheSIFTfeature,whichiscomputationallyintensive.Inarecentresearch[11],wehaveimplementedanefficientfeaturematchingtechniquefasterthanLowe’sSIFTwithself-organizingmap(SOM)thatcanbeusedforreal-timestereomatchingapplications.Inthepresentresearch,weextendedourresearchandimplementourproposedmethodongraphicsprocessingunit(GPU)tofurtheroptimizethetime.Duetotheadvancementsofparallelprocessingtechniques,multi-coreGPUtechniqueshavebeenwidelyappliedtoacceleratethecomputationallyintensivetasks[12].ModernprogrammablegraphicshardwarecontainspowerfulcoprocessorsGPUswithapeakperformanceofhundredsofGigaFLOPSwhichisanorderofmagnitudehigherthanthatofCPUs[13].Foracceleratingtheapplicationsofcomputervisionmanyresearchersarenowexploitingparallelismprovidedbymodernprogrammablegraphicshardwarethatprovidesagreatscopeforaccelerationtoruncomputationsinparallel[14-15].Someresearchersalsoutilizedspecializedhardwareandreconfigurablehardwaretospeedupthesealgorithms[16-18].Oneexampleofabroadareaofapplicationisindiscoveringconcurrencyinparallelcomputing,wherecoloringisusedtoidentifysubtasksthatcanbecarriedoutordataelementsthatcanbeupdatedsimultaneously[19].Anotherexampleofabroadapplicationareaofcoloringistheefficientcomputationofsparsederivativematrices[20].WiththeincreasingprogrammabilityandcomputationalpoweroftheGPU,therecentworkbySinhaetal.[12]acceleratessomepartsoftheSIFTalgorithmusingthehardwarecapacitiesofGPUs.A10xspeedupisobtained,allowingforapplicationsonvideo-sizedimages[12].Avarietyofcomputervisionalgorithmshasbeenparallelized,providingsignificantaccelerationtothecomputation[12,14,15].Inthispaper,anoveltechniqueispresentedthatisdesignedtoachievefastfeaturematchingintheimageswiththeuseofneuralnetworksandGPUs.OurcontributionistheproposalofaGPU-optimizedmatchingtechniquebasedonKohonen’sself-organizingmap(SOM)[21].TheproposedmethodprovidessignificantreductioninthecomputationtimecomparedtoLowe’sSIFT.Inourapproach,thescalespaceforkeypointsextractionisconfiguredinparallelfordetectingthecandidatepointsamongwhichthenumberofkeypointsisreducedwiththeSOMneuralnetwork.ThedescriptorvectorgenerationisacceleratedontheGPUandthematchingisaccomplishedwithcompetitivelearning.ThekeyideaistooptimizethekeypointextractionwithGPUandtoreducethedescriptorsizewiththewinningcalculationmethod.Thesimilarwinningpixelsintheimagesarefoundandassociatedtoaccomplishthefeaturematching.TheproposedmethodoftheGPUisfasterduetotheusageofmulti-processing.38GPUOptimizedStereoImageMatchingTechniqueforComputerVisionApplicationsCopyright©2015MECSI.J.ModernEducationandComputerScience,2015,5,37-42Theremainderofthispaperisorganizedasfollows:SectionIIdescribestheoverviewonstereovision.TheprocedureoffeaturematchingwithGPU-optimizedmethodispresentedinsectionIII.TheexperimentalresultsareshowninsectionIVandconclusionsaredrawninsectionV.II.STEREOVISIONStereovisionisbasedonacquiringthree-dimensional(3D)informationfromdifferentviewsobtainedbyasinglemovingcameraorafixedst

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功