绝密★启用前高中数学圆锥曲线总复习习文科单元检测卷圆锥曲线总复习考试范围:数列;考试时间:100分钟;命题人:段奎学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题(本题共10道小题,每小题0分,共0分)1.过双曲线C:(a>0,b>0)的右顶点作x轴的垂线与C的一条渐近线相交于A.若以C的右焦点为圆心、半径为2的圆经过A、O两点(O为坐标原点),则双曲线C的方程为()A.B.C.D.2.已知双曲线﹣=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,则该双曲线离心率等于()A.B.C.D.3.已知点F是双曲线﹣=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是直角三角形,则该双曲线的离心率是()A.3B.2C.12D.13答案第2页,总22页4.已知双曲线C:﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若双曲线C的离心率为2,△AOB的面积为,则△AOB的内切圆半径为()A.﹣1B.+1C.2﹣3D.2+35.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x6.已知抛物线的方程为y2=4x,过其焦点F的直线l与抛物线交于A,B两点,若S△AOF=3S△BOF(O为坐标原点),则|AB|=()A.B.C.D.47.设F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN=120°,则该双曲线的离心率为()A.B.C.D.8.已知双曲线﹣=1(a>0,b>0)的一条渐近线经过点(2,2),则该双曲线的离心率为()A.B.2C.D.9.过双曲线﹣=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若|FE|=|EP|,则双曲线离心率为()A.B.C.D.10.直线l过抛物线y2=4x的焦点F,交抛物线于A,B两点,且点B在x轴下方,若直线l的倾斜角θ≤,则|FB|的取值范围是()A.(1,4+2]B.(1,3+2]C.(2,4+2]D.(2,6+2]答案第4页,总22页第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(本题共5道小题,每小题0分,共0分)11.已知圆C:(x﹣1)2+(y﹣1)2=2经过椭圆Γ:(a>b>0)的右焦点F和上顶点B,则椭圆Γ的离心率为.12.若M是抛物线y2=4x上一点,且在x轴上方,F是抛物线的焦点,直线FM的倾斜角为60°,则|FM|=.13.已知椭圆的左焦点为1F,右焦点为2F.若椭圆上存在一点P,满足线段2PF相切于以椭圆的短轴为直径的圆,切点为线段2PF的中点,则该椭圆的离心率为.14.以抛物线214yx的焦点为圆心,以焦点到准线的距离为半径的圆被双曲线2214xy-=的渐近线截得的弦长为.15.已知双曲线22221(0,0)xyabab的右焦点为F,过F作斜率为1的直线交双曲线的渐近线于点P,点P在第一象限,O为坐标原点,若OFP的面积为228ab,则该双曲线的离心率为.评卷人得分三、解答题(本题共6道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,共0分)16.已知抛物线C的顶点在原点,焦点F在x轴上,抛物线上的点A到F的距离为2,且A的横坐标为1.(1)求抛物线C的方程;(2)若点M(a,0),P是抛物线C上一动点,求|MP|的最小值.17.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,上顶点为B.Q为抛物线y2=12x的焦点,且•=0,2+=0.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过定点P(0,2)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k(k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.18.已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,P为椭圆上异于A1,A2的点,PA1和PA2的斜率之积为﹣.(1)求椭圆C的标准方程;(2)设O为椭圆中心,M,N是椭圆上异于顶点的两个动点,求△MON面积的最大值.19.已知椭圆C:+=1(a>b>1)过点P(﹣1,﹣1),c为椭圆的半焦距,且c=b.答案第6页,总22页(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点P作两条相互垂直的直线l1,l2与椭圆C分别交于另两点M,N,若线段MN的中点在x轴上,求此时直线MN的方程.20.已知椭圆C:+=1(a>b>0)过点(2,0),且椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若动点P在直线x=﹣1上,过P作直线交椭圆C于M,N两点,且P为线段MN中点,再过P:作直线l⊥MN.求直线l是否恒过定点,如果是则求出该定点的坐标,不是请说明理由.21.已知椭圆+=1(a>b>0)经过点(0,),离心率为,左右焦点分别为F1(﹣c,0),F2(c,0)(IⅠ)求椭圆的方程(Ⅱ)若直线l:y=﹣x+m与椭圆交于A,B两点,与以+=1(a>b>0)为直径的圆交于F1,F2两点,且满足D,求直线DF1⊥F1F2的方程.试卷答案1.A考点:双曲线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:求出双曲线的右顶点和右焦点以及渐近线方程,可得A,再由圆的性质可得|AF|=|OF|=c=2,解方程可得a,b,进而得到双曲线方程.解答:解:双曲线的右顶点为(a,0),右焦点F为(c,0),由x=a和一条渐近线y=x,可得A(a,b),以C的右焦点为圆心、半径为2的圆经过A、O两点(O为坐标原点),则|AF|=|OF|=c=2,即有=2,c2=a2+b2=4,解得a=1,b=,即有双曲线的方程为x2﹣=1,故选A.点评:本题考查双曲线的方程和性质,考查渐近线方程的运用和圆的性质,考查运算能力,属于基础题.2.A考点:圆与圆锥曲线的综合.专题:综合题.分析:先将圆的方程化为标准方程,再根据双曲线﹣=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,利用圆心到直线的距离等于半径,可建立几何量之间的关系,从而可求双曲线离心率.解答:解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±,即bx±ay=0圆C:x2+y2﹣6x+5=0化为标准方程(x﹣3)2+y2=4∴C(3,0),半径为2答案第8页,总22页∵双曲线﹣=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切∴∴9b2=4b2+4a2∴5b2=4a2∵b2=c2﹣a2∴5(c2﹣a2)=4a2∴9a2=5c2∴=∴双曲线离心率等于故选:A.点评:本题以双曲线方程与圆的方程为载体,考查直线与圆相切,考查双曲线的几何性质,解题的关键是利用直线与圆相切时,圆心到直线的距离等于半径.3.B考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线的对称性及直角三角形,可得∠AEF=45°,从而|AF|=|EF|,求出|AF|,|EF|得到关于a,b,c的等式,即可求出离心率的值.解答:解:∵△ABE是直角三角形,∴∠AEB为直角,∵双曲线关于x轴对称,且直线AB垂直x轴,∴∠AEF=∠BEF=45°,∴|AF|=|EF|,∵F为左焦点,设其坐标为(﹣c,0),令x=﹣c,则﹣=1,则有y=±,∴|AF|=,∴|EF|=a+c,∴=a+c∴c2﹣ac﹣2a2=0∴e2﹣e﹣2=0∵e>1,∴e=2故选B.点评:本题考查双曲线的对称性、考查双曲线的三参数关系:c2=a2+b2、考查双曲线的离心率,属于中档题.4.C考点:双曲线的简单性质.专题:解三角形;圆锥曲线的定义、性质与方程.分析:由双曲线的离心率公式及a,b,c的关系可得b=a,由双曲线的渐近线方程和抛物线的准线方程解得A,B,求出三角形AOB的面积,进而解得p=2,即有A,B的坐标,进而得到三角形AOB的三边,再由内切圆的半径与三角形的面积之间的关系,计算即可得到r.解答:解:由e====2,可得=.由,求得A(﹣,),B(﹣,﹣),所以S△AOB=••=.将=代入,得p2=4,解得p=2.所以A(﹣1,),B(﹣1,﹣),则△AOB的三边分别为2,2,2,设△AOB的内切圆半径为r,由(2+2+2)r=,解得r=2﹣3,故选C.点评:本题考查双曲线和抛物线的综合应用.求解这类问题关键是结合两个曲线的位置关系,找到它们对应的几何量,然后利用图形中的平面几何性质解答问题.5.D答案第10页,总22页考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用离心率公式,再由双曲线的a,b,c的关系,可得a,b的关系,再由渐近线方程即可得到.解答:解:由双曲线的离心率为,则e==,即c=a,b===a,由双曲线的渐近线方程为y=x,即有y=x.故选D.点评:本题考查双曲线的方程和性质,考查离心率公式和渐近线方程的求法,属于基础题.6.A考点:直线与圆锥曲线的综合问题;抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据对称性可设直线的AB的倾斜角为锐角,利用S△AOF=3S△BOF,求得yA=﹣3yB,设出直线AB的方,与抛物线方程联立消去x,利用韦达定理表示出yA+yB和yAyB,进而求得利用+,求得m,最后利用斜率和A,B的坐标求得|AB|.解答:解:设直线的AB的倾斜角为锐角,∵S△AOF=3S△BOF,∴yA=﹣3yB,∴设AB的方程为x=my+1,与y2=4x联立消去x得,y2﹣4my﹣4=0,∴yA+yB=4m,yAyB=﹣4.∴+==﹣2==﹣3﹣,∴m2=,∴|AB|=•=.故选:A.点评:本题主要考查了抛物线的概念和性质,直线和抛物线的综合问题.要注意解题中出了常规的联立方程,用一元二次方程根与系数的关系表示外,还可考虑运用某些几何性质.7.A考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先求出M,N的坐标,再利用余弦定理,求出a,c之间的关系,即可得出双曲线的离心率.解答:解:不妨设圆与y=x相交且点M的坐标为(x0,y0)(x0>0),则N点的坐标为(﹣x0,﹣y0),联立y0=x0,得M(a,b),N(﹣a,﹣b),又A(﹣a,0)且∠MAN=120°,所以由余弦定理得4c2=(a+a)2+b2+b2﹣2•bcos120°,化简得7a2=3c2,求得e=.故选A.点评:本题主要考查双曲线的离心率.解决本题的关键在于求出a,c的关系.8.B考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据双曲线﹣=1(a>0,b>0)的一条渐近线经过点(2,2),可得==,利用,可求双曲线的离心率.解答:解:∵双曲线﹣=1(a>0,b>0)的一条渐近线经过点(2,2),∴==,∴=4,∴e=2.故选:B.答案第12页,总22页点评:本题考查双曲线的几何性质,考查学生的计算能力,正确运用双曲线﹣=1(a>0,b>0)的一条渐近线经过点(2,2)是关键.9.A考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线的右焦点的坐标为(c,0),利用O为FF'的中点,E为FP的中点,可得OE为△PFF'的中位线,从而可求|PF|,再设P(x,y)过点F作x轴的垂线,由勾股定理得出关于a,c的关系式,最后即可求得离心率.解答:解:设双曲线的右焦点为F',则F'的坐标为(c,0)因为抛物线为y2=4cx,所以F'为抛