教辅:高考数学复习练习之选填题3

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

选填题(三)一、单项选择题1.设a为1i的虚部,b为(1+i)2的实部,则a+b=()A.-1B.-2C.-3D.0答案A解析因为1i=-i,所以a=-1,又(1+i)2=2i,所以b=0,所以a+b=-1,故选A.2.(2020·山东日照二模)已知A={y|y=log2x,x1},B=y|y=1x,x2,则A∩B=()A.12,+∞B.0,12C.(0,+∞)D.(-∞,0)∪12,+∞答案B解析由题意,集合A={y|y=log2x,x1}={y|y0},集合B=y|y=1x,x2=y|0y12,所以A∩B=y|0y12=0,12.故选B.3.(2020·全国卷Ⅲ)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e-0.23t-53,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln19≈3)()A.60B.63C.66D.69答案C解析因为I(t)=K1+e-0.23t-53,所以I(t*)=K1+e-0.23t*-53=0.95K,则e0.23(t*-53)=19,所以0.23(t*-53)=ln19≈3,解得t*≈30.23+53≈66.故选C.4.已知(ax+b)6的展开式中x4的系数与x5的系数分别为135与-18,则(ax+b)6的展开式中所有项的系数之和为()A.-1B.1C.32D.64答案D解析由二项展开式的通项公式可知x4的系数为C26a4b2,x5的系数为C16a5b,则由题意可得C26a4b2=135,C16a5b=-18,解得a=1,b=-3或a=-1,b=3,所以a+b=±2,故(ax+b)6的展开式中所有项的系数之和为(a+b)6=64,选D.5.(2020·山东菏泽高三联考)从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数,另一个作为对数的真数,则对数值大于0且小于1的概率是()A.18B.14C.38D.12答案C解析由于1只能作为真数,从其余各数中任取一数为底数,共得到4个对数,其值均为0.从1除外的其余各数中任取两数分别作为对数的底数和真数,基本事件为(2,3),(2,4),(2,5),(3,2),(3,4),(3,5),(4,2),(4,3),(4,5),(5,2),(5,3),(5,4),共12个,所以基本事件总数为16个,满足题设条件的事件有(3,2),(4,2),(5,2),(4,3),(5,3),(5,4),共6个,由古典概型的计算公式得所求事件的概率P=616=38.故选C.6.已知数列{an}满足an+1+(-1)n+1an=2,则其前100项和为()A.250B.200C.150D.100答案D解析因为an+1+(-1)n+1an=2,所以a2+a1=2,a4+a3=2,a6+a5=2,…a100+a99=2.以上50个等式相加可得,数列{an}的前100项和为2×50=100.7.(2020·山东聊城二模)我国古代《九章算术》中将上、下两面为平行矩形的六面体称为刍童.如图的刍童ABCD-EFGH有外接球,且AB=26,AD=22,EH=15,EF=5,平面ABCD与平面EFGH间的距离为1,则该刍童外接球的体积为()A.12πB.24πC.36πD.48π答案C解析假设O为刍童外接球的球心,连接HF,EG交于点O1,连接AC,DB交于点O2,由球的几何性质可知O,O1,O2在同一条直线上,连接OB,OG,如图所示.由题意可知,OO1⊥平面ABCD,OO1⊥平面EFGH,O2O1=1.设O2O=r,在Rt△OGO1中,OG2=OO21+O1G2,在矩形EFGH中,EG=EF2+FG2=52+152=25.O1G=12EG=5.∴OG2=OO21+O1G2=(r+1)2+(5)2.在Rt△OBO2中,OB2=OO22+O2B2,在矩形ABCD中,DB=AD2+AB2=222+262=42.O2B=12DB=22.∴OB2=OO22+O2B2=r2+(22)2.设外接球的半径OG=OB=R,∴(r+1)2+(5)2=r2+(22)2,解得r=1.则OB=12+222=3,即R=3.则该刍童外接球的体积V=43πR3=43π×33=36π.故选C.8.(2020·山东青岛二模)已知图象连续不断的函数f(x)的定义域为R,f(x)是周期为2的奇函数,y=|f(x)|在区间[-1,1]上恰有5个零点,则f(x)在区间[0,2020]上的零点个数为()A.5050B.4041C.4040D.2020答案B解析由函数f(x)是定义域为R的奇函数,可得f(0)=0,f(-1)+f(1)=0,又由函数f(x)的图象连续不断,且周期为2,所以f(-1)=f(1),所以f(-1)=f(1)=0.又由y=|f(x)|在区间[-1,1]上恰有5个零点,可得函数f(x)在区间[-1,0)和(0,1]内各有2个零点,其中f(-1)=0,f(1)=0,又因为f(x)的周期为2,所以f(x)在区间(1,2]内有2个零点,其中f(2)=0,所以函数f(x)在区间(0,2]内有4个零点,所以f(x)在区间[0,2020]上的零点个数为20202×4+1=4041.故选B.二、多项选择题9.(2020·山东省实验中学6月模拟)CPI是居民消费价格指数的简称,是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.同比,一般情况下是今年第n月与去年第n月之比;环比,表示连续2个统计周期(比如连续两月)内的量的变化比.如图是根据国家统计局发布的2019年4月~2020年4月我国CPI涨跌幅数据绘制的折线图,根据该折线图,则下列说法正确的是()A.2020年1月CPI同比涨幅最大B.2019年4月与同年12月相比较,4月CPI环比更大C.2019年7月至12月CPI一直增长D.2020年1月至4月CPI只跌不涨答案AB解析对于A,由同比折线可发现2020年1月CPI同比涨幅最大,故A正确;对于B,由图可知2019年4月环比涨幅为0.1%,2019年12月为0%,故B正确;对于C,2019年7月至12月CPI不是一直增长的,故C错误;对于D,2020年1月至4月CPI有涨有跌,故D错误.故选AB.10.(2020·新高考卷Ⅰ)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=()A.sinx+π3B.sinπ3-2xC.cos2x+π6D.cos5π6-2x答案BC解析由函数图象可知T2=2π3-π6=π2,则|ω|=2πT=2ππ=2,所以A不正确.当x=2π3+π62=5π12时,y=-1,取ω=2,则2×5π12+φ=3π2+2kπ(k∈Z),解得φ=2kπ+2π3(k∈Z),即函数的解析式为y=sin2x+2π3+2kπ=sin2x+π6+π2=cos2x+π6=sinπ3-2x.而cos2x+π6=-cos5π6-2x.故选BC.11.(2020·海南四模)已知数列{an}的首项为4,且满足2(n+1)an-nan+1=0(n∈N*),则()A.ann为等差数列B.{an}为递增数列C.{an}的前n项和Sn=(n-1)·2n+1+4D.an2n+1的前n项和Tn=n2+n2答案BD解析由2(n+1)an-nan+1=0,得an+1n+1=2×ann,所以ann是以a11=a1=4为首项,2为公比的等比数列,故A错误;因为ann=4×2n-1=2n+1,所以an=n·2n+1,显然递增,故B正确;因为Sn=1×22+2×23+…+n·2n+1,2Sn=1×23+2×24+…+n·2n+2,所以-Sn=1×22+23+…+2n+1-n·2n+2=221-2n1-2-n·2n+2,故Sn=(n-1)×2n+2+4,故C错误;因为an2n+1=n·2n+12n+1=n,所以an2n+1的前n项和Tn=n1+n2=n2+n2,故D正确.故选BD.12.(2020·山东聊城一模)已知直线l:2kx-2y-kp=0与抛物线C:y2=2px(p0)相交于A,B两点,点M(-1,-1)是抛物线C的准线与以AB为直径的圆的公共点,则下列结论正确的是()A.p=2B.k=-2C.|AB|=5D.△MAB的面积为55答案ABC解析由题意知,抛物线C的准线为x=-1,即p2=1,解得p=2,故A正确;因为p=2,所以抛物线C的方程为y2=4x,其焦点为F(1,0),又直线l:2kx-2y-kp=0,即y=k(x-1),所以直线l恒过抛物线的焦点F(1,0).设点A(x1,y1),B(x2,y2),因为A,B两点在抛物线C上,联立方程y21=4x1,y22=4x2,两式相减可得,y1-y2x1-x2=4y1+y2=k,设AB的中点为Q(x0,y0),则y0=2k,因为点Q(x0,y0)在直线l上,所以x0=2k2+1,所以点Q2k2+1,2k是以AB为直径的圆的圆心,由抛物线的定义知,圆Q的半径r=|AB|2=x1+x2+22=2x0+22=2k2+2,因为|QM|2=2k2+22+2k+12=r2,所以2k2+22+2k+12=2k2+22,解得k=-2,故B正确;因为k=-2,所以弦长|AB|=2r=22k2+2=2×24+2=5,故C正确;因为k=-2,所以直线l的方程为y+2(x-1)=0,由点到直线的距离公式可得,点M到直线l的距离为d=|-2-1-2|22+12=5,所以S△MAB=12·d·|AB|=12×5×5=552,故D错误.故选ABC.三、填空题13.(2020·海南中学高三第七次月考)已知向量a,b满足|a|=1,|b|=2,a⊥(a+b),则a与b夹角的大小是________.答案3π4解析由a⊥(a+b)得,a·(a+b)=0,即a2+a·b=0,据此可得a·b=|a||b|cos〈a,b〉=-a2,∴cos〈a,b〉=-11×2=-22,又a与b的夹角的取值范围为[0,π],故a与b的夹角为3π4.14.(2020·贵阳高三6月适应性考试二)曲线y=lnxx+2在x=1处的切线方程为________.答案x-y+1=0解析当x=1时,y=ln11+2=2,∵y′=1x·x-lnxx2=1-lnxx2,∴y′|x=1=1-ln11=1,则曲线y=lnxx+2在x=1处的切线方程为y-2=1·(x-1),即x-y+1=0.15.(2020·福建高三毕业班质量检查测试)设△ABC的内角A,B,C的对边分别为a,b,c,若1tanA+1tanB=asinA,cosC=14,a2+b2=68,则△ABC的面积为________.答案15解析由1tanA+1tanB=asinA,得sinAcosB+cosAsinBsinAsinB=asinA,即sinCsinAsinB=asinA,所以cb=a,即c=ab,又a2+b2=68,cosC=14,所以c2=a2+b2-2abcosC=68-2c×14,即2c2+c-136=0,解得c=8或c=-172(舍去),所以ab=8,又sinC=1-142=154,所以△ABC的面积S△ABC=12absinC=15.16.如图,记椭圆x225+y29=1,y225+x29=1内部重叠区域的边界为曲线C,P是曲线C上的任意一点,给出下列四个命题:①P到F1(-4,0),F2(4,0

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功