1EvaluationWarning:ThedocumentwascreatedwithSpire.Docfor.NET.《第27章相似》单元测试卷一.选择题(共10小题)1.已知2x=3y,则下列比例式成立的是()A.=B.=C.=D.=2.已知线段a、b、c、d满足ab=cd,把它改写成比例式,错误的是()A.a:d=c:bB.a:b=c:dC.d:a=b:cD.a:c=d:b3.已知点C是线段AB的黄金分割点,且AC>BC,则下列等式中成立的是()A.AB2=AC•CBB.CB2=AC•ABC.AC2=BC•ABD.AC2=2BC•AB4.AD是△ABC的中线,E是AD上一点,AE:ED=1:3,BE的延长线交AC于F,AF:FC=()A.1:3B.1:4C.1:5D.1:65.通过一个3倍的放大镜看一个△ABC,下面说法正确的是()A.△ABC放大后,∠A是原来的3倍B.△ABC放大后周长是原来的3倍C.△ABC放大后,面积是原来的3倍D.以上都不对6.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:27.如图所示,△ACB∽△A′CB′,∠BCB′=30°,则∠ACA′的度数为()2A.20°B.30°C.35°D.40°8.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠BB.∠APC=∠ACBC.D.9.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A.=B.=C.=D.=10.如图,身高1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树的高度为()A.4.8mB.6.4mC.8mD.10m二.填空题(共5小题)11.已知3x=5y,则=.12.在比例尺为1:2000的地图上,测得A、B两地间的图上距离为4.5厘米,则其实际距离为米.13.点C是线段AB的黄金分割点(AC>BC),AB=2,则AC=.(用根号表示)14.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为.315.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.三.解答题(共5小题)16.已知线段a、b、c满足,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x.17.如图,A、B两地隔着湖水,从C地测得CA=50m,CB=60m,∠ACB=145°,用1厘米代表10米(就是1:1000的比例尺)画出如图的图形.量出AB的长(精确到1毫米),再换算出A、B间的实际距离.18.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=2,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.19.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.(1)如果AB=6,BC=8,DF=21,求DE的长;(2)如果DE:DF=2:5,AD=9,CF=14,求BE的长.420.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于;②当菱形的“接近度”等于时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.52019年人教版九下数学《第27章相似》单元测试卷参考答案与试题解析一.选择题(共10小题)1.【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【解答】解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选:C.【点评】本题主要考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.2.【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【解答】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、d:a=b:c⇒dc=ab,故正确;D、a:c=d:b⇒ab=cd,故正确.故选:B.【点评】掌握比例的基本性质,根据比例的基本性质实现比例式和等积式的互相转换.3.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据线段黄金分割的定义得:AC2=BC•AB.故选:C.【点评】本题主要考查了黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键,难度适中.4.【分析】作DH∥BF交AC于H,根据三角形中位线定理得到FH=HC,根据平行线分线段成比例定理得到==,计算得到答案.【解答】解:作DH∥BF交AC于H,6∵AD是△ABC的中线,∴FH=HC,∵DH∥BF,∴==,∴AF:FC=1:6,故选:D.【点评】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5.【分析】根据相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方来判断.【解答】解:用一个能放大3倍的放大镜看△ABC,则看到的三角形与△ABC相似,相似比是3:1,A、两个相似三角形的对应角相等,故A错;B、周长的比等于相似比,即△ABC放大后,周长是原来的3倍,故B正确;C、面积的比是相似比的平方,即9:1,△ABC放大后,面积是原来的9倍,故C错;D、A选项错误,故D错.故选:B.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(2)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.6.【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.【解答】解:∵矩形纸片对折,折痕为EF,∴AF=AB=a,7∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选:B.【点评】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.7.【分析】根据相似三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB∽△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选:B.【点评】本题考查了相似三角形性质的应用,注意:相似三角形的对应角相等.8.【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【解答】解:A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,8所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选:C.【点评】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是关键.9.【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴=,故A正确,选项不符合题意;∴=正确,B选项不符合题意;=,正确,故C不符合题意;∴=,错误,D符合题意.故选:D.【点评】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.10.【分析】可由平行线分线段成比例求解线段的长度.【解答】解:由题意可得,=,即树高==8m,故选:C.【点评】本题考查了相似三角形的应用,熟练掌握平行线分线段成比例的性质是解题的关键.二.填空题(共5小题)11.【分析】根据两外项的积等于两内项的积,可得答案.【解答】解:∵3x=5y,∴=,9故答案为:.【点评】本题考查了比例的性质,利用了比例的性质:外项的积等于内项的积.12.【分析】根据比例尺=图上距离:实际距离,依题意列出比例式,即可求得实际距离.【解答】解:设A,B两地的实际距离为xcm,则:1:2000=4.5:x,解得x=9000.9000cm=90m.故答案为:90.【点评】本题考查了比例尺的定义.要求能够根据比例尺由图上距离正确计算实际距离,注意单位的换算.13.【分析】用AC表示出BC,然后根据黄金分割点的定义列方程求解即可.【解答】解:∵AC>BC,AB=2,∴BC=AB﹣AC=2﹣AC,∵点C是线段AB的黄金分割点,∴AC2=AB•BC,∴AC2=2(2﹣AC),整理得,AC2+2AC﹣4=0,解得AC=﹣1+,AC=﹣1﹣(舍去).故答案为:﹣1+.【点评】本题考查了黄金分割,熟记黄金分割点的定义并列出关于AC的方程是解题的关键.14.【分析】根据平行线分线段成比例定理推出=,代入求出即可.【解答】解:∵DE∥BC,∴=,∵AD=1,BD=2,∴AB=3,∴=,故答案为:.10【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线被两条直线所截的对应线段成比例中的对应.题目较好,但是一道比较容易出错的题目.15.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.三.解答题(共5小题)16.【分析】(1)设比值为k,然后用k表示出a、b、c,再代入等式求解得到k,然后求解即可;(2)根据比例中项的定义列式求解即可.【解答】解:(1)设===k,则a=3k,b=2k,c=6k,所以,3k+2×2k+6k=26,解得k=2,所以,a=3×2=6,b=2×2=4,c=6×2=12;(2)∵线段x是线段a、b的比例中项,∴x2=ab=6×4=24,∴线段x=2.【点评】本题考查了比例的性质,比例线段,利用“设k法”用k表示出a、b、c可以使计算更加简便.17.【分析】根据比例尺的定义,1厘米代表10米,把CA=50m,CB=60m,转化为CA=5cm,CB=6cm,结合题意画图,再测量AB的长,最后换算出A、B间的实际距离.【解答】解:如图,测得AB长约10.5cm,换算成实际距离约为10.5×1000=10500cm=105m.11即A、B间的实际距离是105m.【点评】本题考查了比例问题以及两点之间的距离是连接两点的线段的长度.18.【分析】(1)判断△ABC∽△BDC,根据对应边成比例可得出答案.(2)根据黄金比值