1EvaluationWarning:ThedocumentwascreatedwithSpire.Docfor.NET.13.1轴对称1.在以下四个标志中,是轴对称图形的是().2.下列说法中错误的是().A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.全等的三角形一定关于某条直线对称D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称3.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为().(第3题图)A.48°B.54°C.74°D.78°4.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CDD.CD平分∠ACB(第4题图)5.如图所示,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC的度数为()A.40°B.70°C.30°D.50°(第5题图)26.如图,在△ABC中,AB的中垂线交AB于点E,交BC于点D,若△ADC的周长为16cm,AC=4cm,则BC的长为()A.22cmB.12cmC.10cmD.7cm(第6题图)7.我国的文字非常讲究对称美,分析如图四个图案,图案________有别于其余三个图案().8.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图是().(第8题图)9.(创新应用题)如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量的存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的性质是().(第9题图)A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行10.从商场试衣镜中看到某件名牌服装标签上的后5位编码是,则该编码实际上是__________.11.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为__________.3(第11题图)12.如图所示,在△ABC中,∠BAC=106°,EF,MN分别是AB,AC的垂直平分线,点E,N在BC上,则∠EAN=.(第12题图)13.如图,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点F,E,连接EF交OA于点N,交OB于点M,EF=15,求△PMN的周长.(第13题图)14.如图,将一张正六边形纸沿虚线对折3次,得到一个多层的60°角的三角形纸.用剪刀在折叠好的纸上随意剪出一条线.(第14题图)(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有五条对称轴的图形,你应该取什么形状的纸?应该如何折叠?415.如图,在△ABC中,BC=7,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G.求△AEG的周长.(第15题图)16.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线.(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.(第16题图)5参考答案1.A分析:只有A图沿中间竖直的一条直线折叠,左右两边能够重合,故选A.2.C分析:虽然关于某条直线对称的两三角形全等,但全等的两三角形不一定关于某条直线对称,因而选C.3.B分析:因为关于某直线对称的两图形全等,所以∠A=∠A′=78°,∠C′=∠C=48°,所以∠B=54°,故选B.4.C5.C分析:∵AB=AC,∠A=40°,∴∠ABC=∠C=70.∵MN是AB的垂直平分线,∴DA=DB.∴∠DBA=∠A=40°,∴∠DBC=30°.故选C.6.B分析:∵DE是AB的垂直平分线,∴DA=DB.∵△ADC的周长为16cm,∴AD+AC+CD=BD+CD+AC=BC+AC=16cm.∵AC=4cm,∴BC=12cm.故选B.7.D分析:都是轴对称图形,但图案D有两条对称轴,其余三个图案都只有一条对称轴.8.D分析:解决此类问题的基本方法是,根据“折叠后的图形再展开,则所得的整个图形应该是轴对称图形”,从所给的最后图形作轴对称,题目折叠几次,就作几次轴对称,沿两条对角线所在直线画对称轴,只有D适合,故选D.9.B分析:因为对称且平移,所以原有的性质已有变化,A、C、D都已不成立,只有B选项正确,故选B.10.BA629分析:假定最左侧或右侧有一条直线为对称轴,沿此直线折叠都会得到BA629,或将此图案从反面观察,也可得到BA629.11.6分析:由△ABC与四边形AEDC的周长之差为12,可知BE+BD-DE=12①.由△EDC的周长为24可知CE+CD+DE=24.由DE是BC边上的垂直平分线可知BE=CE,BD=CD,所以BE+BD+DE=24②.②-①,得2DE=12,所以DE=6.12.32°13.解:∵点P与点E关于OB轴对称,∴CE=CP,MC⊥PE.∴∠MCE=∠MCP=90°.在△MCE和△MCP中,∵,,,CECPMCEMCPCMCM∴△MCE≌△MCP.∴MP=ME,同理NP=NF.∴MP+MN+NP=ME+MN+NF=EF=15,即△PMN的周长是15.614.解:(1)轴对称图形.(2)至少有3条对称轴.(3)取一张正十边形的纸,沿它的通过中心的五条对角线折叠5次,得到一个多层的36°角的图形,用剪刀在叠好的纸上任意剪出一条线,打开就可以得到一个至少含五条对称轴的图形.15.解:∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,CG=AG.∴△AEG的周长为AE+EG+AG=BE+EG+CG=BC=7.16.(1)证明:∵∠A=∠ABE,∴EA=EB.∵AD=DB,∴DF是线段AB的垂直平分线.(2)解:∵∠A=46°,∴∠ABE=∠A=46°.∵AB=AC,∴∠ABC=∠ACB=67°,∴∠EBC=∠ABC-∠ABE=21°,∠F=90°-∠ABC=23°.