2018-2019学年度七年级数学上册 第一章 有理数 1.2 有理数 1.2.4 绝对值同步练习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

11.2.4绝对值学校:___________姓名:___________班级:___________一.选择题(共12小题)1.|﹣3|=()A.3B.﹣3C.D.﹣2.﹣8的绝对值是()A.﹣8B.8C.±8D.﹣3.若|﹣x|=5,则x等于()A.﹣5B.5C.D.±54.下列各式不正确的是()A.|﹣2|=2B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|5.绝对值等于3的数是()A.B.﹣3C.0D.3或﹣36.|﹣|的相反数是()A.B.﹣C.6D.﹣67.下列各数与﹣8相等的是()A.|﹣8|B.﹣|﹣8|C.﹣42D.﹣(﹣8)8.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤09.数轴上有A、B、C、D四个点,其中绝对值等于2的点是()A.点AB.点BC.点CD.点D10.如果一个有理数的绝对值是5,那么这个数一定是()A.5B.﹣5C.﹣5或5D.以上都不对11.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a>0或a=0D.a<0或a=012.若|a|=a,|b|=﹣b,则ab的值不可能是()2A.﹣2B.﹣1C.0D.1二.填空题(共10小题)13.计算:|﹣2018|=.14.如果|x|=6,则x=.15.写出一个数,使这个数的绝对值等于它的相反数:.16.﹣的绝对值是.17.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越.18.|2|=.19.若|a﹣1|=2,则a=.20.|x﹣1|=1,则x=.21.已知有理数a在数轴上的位置如图,则a+|a﹣1|=.22.如果a的相反数是1,那么a的绝对值等于.三.解答题(共5小题)23.已知|a|=3,|b|=2且|a﹣b|=b﹣a,求a+b的值.24.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.25.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.3(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.26.a、b所表示的有理数如图所示,化简|a+b|﹣|a﹣b|27.若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.4参考答案与试题解析一.选择题(共12小题)1.解:|﹣3|=3.故选:A.2.解:∵﹣8<0,∴|﹣8|=8.故选:B.3.解:∵|﹣x|=5,∴﹣x=±5,∴x=±5.故选:D.4.解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选:D.5.解:绝对值等于3的数有±3,故选:D.6.5解:|﹣|的相反数,即的相反数是﹣.故选:B.7.解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.8.解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.9.解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A.故选:A.10.解:如果一个有理数的绝对值是5,那么这个数一定是﹣5或5.故选:C.11.解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选:D.612.解:∵|b|=﹣b,∴b≤0,∵|a|=a,∴a≥0,∴ab的值为非正数.故选:D.二.填空题(共10小题)13.解:|﹣2018|=2018.故答案为:2018.14.解:|x|=6,所以x=±6.故本题的答案是±6.15.解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:0或任意一个负数16.解:|﹣|=.故答案为.17.解:一个数的绝对值实际上就是该点与原点间的距离,因而一个数的绝对值越小,则该数在数轴上所对应的点,离原点越近.故答案为近.718.解:|2|=2;故答案为:219.解:∵|a﹣1|=2,∴a﹣1=2或a﹣1=﹣2,∴a=3或﹣1.故答案为:3或﹣1.20.解:∵|x﹣1|=1,∴x﹣1=±1,∴x=2或0,故答案为:2或0.21.解:由数轴上a点的位置可知,a<0,∴a﹣1<0,∴原式=a+1﹣a=1.故答案为:1.22.解:因为a的相反数是1,所以a=﹣1,所以a的绝对值等于1,故答案为:1三.解答题(共5小题)23.8解:∵|a|=3,|b|=2且|a﹣b|=b﹣a,∴b>a,a=﹣3,b=±2∴a+b=﹣1或﹣5.24.解:∵|a﹣1|=9,|b+2|=6,∴a=﹣8或10,b=﹣8或4,∵a+b<0,∴a=﹣8,b=﹣8或4,当a=﹣8,b=﹣8时,a﹣b=﹣8﹣(﹣8)=0,当a=﹣8,b=4时,a﹣b=﹣8﹣4=﹣12.综上所述,a﹣b的值为0或﹣12.25.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.26.解:∵从数轴可知:b<0<a,∴a﹣b>0,a+b<0,∴|a+b|﹣|a﹣b|=﹣a﹣b﹣a+b=﹣2a.27.解:∵|a|=2,c是最大的负整数,9∴a=±2,c=﹣1.当a=2时,a+b﹣c=2+(﹣3)﹣(﹣1)=2﹣3+1=0;当a=﹣2时,a+b﹣c=﹣2+(﹣3)﹣(﹣2)=﹣2﹣3+1=﹣4.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功