111.2.1三角形内角和定理学校:___________姓名:___________班级:___________一.选择题(共12小题)1.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°2.在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°﹣∠B;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.①②B.③④C.①③④D.①②③3.已知,在△ABC中,∠A=60°,∠C=80°,则∠B=()A.60°B.30°C.20°D.40°4.有一个外角等于120°,且有两个内角相等的三角形是()A.不等边三角形B.等腰三角形C.等边三角形D.不能确定5.三角形三个内角的度数分别是(x+y)°,(x﹣y)°,x°,且x>y>0,则该三角形有一个内角为()A.30°B.45°C.90°D.60°6.在△ABC中,∠A=25°,∠B=63°,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠AB.∠1+∠2=2∠AC.∠1﹣∠2=∠AD.∠1﹣∠2=2∠A28.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A:∠B:∠C=1:2:3,能确定△ABC为直角三角形的条件有()A.1个B.2个C.3个D.0个9.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC上的点A′处,如果∠A′EC=70°,则∠A′DE的度数为()A.50°B.60°C.75°D.65°10.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形11.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,若∠B=30°,∠C=40°,则∠DAC的度数是()A.25°B.35°C.45°D.75°12.一个缺角的三角形ABC残片如图所示,量得∠A=45°,∠B=60°,则这个三角形残缺前的∠C的度数为()A.75°B.65°C.55°D.45°二.填空题(共8小题)13.在△ABC中,若∠A=78°,∠B=57°,则∠C=.14.已知三角形的三个内角的度数比为2:3:4,则这个三角形三个内角的度数为.15.一个三角形的三个内角中最多有个钝角(或直角).316.在△ABC中,∠C=60°,∠A=2∠B,则∠A=.17.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB=(度).18.在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2=.19.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=.(用度数表示)20.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=80°,则∠BOC=.三.解答题(共4小题)21.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.422.如图,在△ABC中,∠A=50°,过点C作CD∥AB,若CB平分∠ACD,求∠B的度数.23.如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD是高.(1)求∠BAE的度数;(2)求∠EAD的度数;(3)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由.524.如图,△ABC中AD是BC边上的高,AE是∠BAC的平分线,∠B=50°,∠C=70°.(1)∠BAC=°;(2)求∠DAE的度数.6参考答案与试题解析一.选择题(共12小题)1.解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.2.解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:D.3.解:∵在△ABC中,∠A=60°,∠C=80°,∴∠B=180°﹣60°﹣80°=40°.故选:D.4.7解:当∠BAC的外角是120°时,则∠BAC=60°,∠B=∠C=(180°﹣∠BAC)=60°,即∠BAC=∠B=∠C,所以△ABC是等边三角形;当∠ABC的外角是120°时,∠ABC=60°,即∠C=∠ABC=60°,∵∠BAC+∠ABC+∠C=180°,∴∠BAC=60°,∴∠BAC=∠B=∠C,∴△ABC是等边三角形;同样当∠ACB的外角是120°,也能推出△ABC是等边三角形;故选:C.5.解:∵三个内角的度数分别是(x+y)°,(x﹣y)°,x°,三角形内角和为180°,∴x+y+x﹣y+x=180,∴3x=180,x=60,故选:D.6.解:∵△ABC中,∠A=25°,∠B=63°,∴∠C=180°﹣25°﹣63°=92°,∴△ABC是钝角三角形.故选:C.87.解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,∵∠1=∠A+∠3,∠3=∠A′+∠2,∴∠1=∠A+∠A′+∠2,∴∠1﹣∠2=2∠A,故选:D.8.解:∵∠A+∠B+∠C=180°,∴若①∠A+∠B=∠C,则∠C=90°.三角形为直角三角形;②∠A=∠B=2∠C,则∠A=∠B=72°,∠C=36°.三角形不是直角三角形;③∠A﹕∠B﹕∠C=1﹕2﹕3,则∠A=30°,∠B=60°,∠C=90°.三角形为直角三角形;故选B.9.解:∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故选:D.10.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,9解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.11.解:∵AB=BD,∠B=30°,∴∠ADB=75°,∵∠C=40°,∴∠DAC=∠ADB﹣∠C=75°﹣40°=35°.故选:B.12.解:∵∠A+∠B+∠C=180°,∴∠C=180°﹣(∠A+∠B)=180°﹣(45°+60°)=75°,故选:A.二.填空题(共8小题)13.解:由题可得,∠C=180﹣∠A﹣∠B=180°﹣78°﹣57°=45°,故答案为:45°.14.解:根据三角形的内角和定理,得三个内角分别是180°×=40°,180°×=60°,180°×=80°.1015.解:假设三角形中,出现2个或3个钝角,那么三角形的内角和就大于180°,不符合三角形内角和是180°,因而假设不成立,所以一个三角形中最多有一个钝角.故答案为:1.16.解:设∠A=2x,则∠B=x,由三角形内角和等于180°,得:2x+x+60°=180°,解得x=40°.∴∠A=2x=2×40°=80°.故答案为:80°.17.解:由题意可得∠DAE=∠BAC﹣(90°﹣∠C),又∠BAC=2∠B,∠B=2∠DAE,∴90°﹣2∠B=∠B,则∠B=36°,∴∠BAC=2∠B=72°,∴∠ACB=180°﹣36°﹣72°=72°.故答案为7218.解:∵∠A+∠B+∠C=180°,∴∠A+∠B=180°﹣∠C=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°.故答案是:270°.1119.解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.20.解:∵在△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵∠ABC和∠ACB的平分线交于O点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×100°=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故答案为:130°.三.解答题(共4小题)21.解:∵DF⊥AB于点F,∴∠AFE=90°,∵∠A=45°,∴∠AEF=45°,∴∠CED=∠AEF=45°.∴∠ACB=∠D+∠CED=30°+45°=75°.22.12解:∵∠A+∠B+∠ACB=180°,∠A=50°,∴∠B+∠ACB=130°.∵CD∥AB,∴∠DCB=∠B.∵CB平分∠ACD,∴∠DCB=∠ACB,∴∠ACB=∠B,∴2∠B=130°,∴∠B=65°.23.解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.又∵AE是∠BAC的平分线,∴∠BAE=∠BAC=×100°=50°.(2)∵∠B=30°,AD⊥BC,∴∠BAD=90°﹣30°=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣50°=10°.(3)∠DAE=(β﹣α),理由如下:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β.又∵AE是∠BAC的平分线,∴∠BAE=∠BAC=90°﹣(α+β).∵∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α).1324.解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°故答案为:60°(2)∵AE是∠BAC的平分线,∠BAC=60°∴∠BAE=30°∴∠AEB=180°﹣∠B﹣∠BAE=100°∵AD是BC边上的高,∴∠ADE=90°∴∠DAE=∠AEB﹣∠ADE=100°﹣90°=10°答:∠DAE的度数是10°.