2018-2019学年高中数学 第一章 空间几何体 1.1.1 棱柱、棱锥、棱台的结构特征练习(含解

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-第1课时棱柱、棱锥、棱台的结构特征A组1.下面图形所表示的几何体中,不是棱锥的为()答案:A2.用一个平面去截四棱锥,不可能得到()A.棱锥B.棱柱C.棱台D.四面体答案:B3.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台解析:剩余部分是四棱锥A'-BCC'B'.答案:B4.观察如图的四个几何体,其中判断不正确的是()-2-A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台解析:结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.答案:B5.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下解析:将所给图形还原为正方体,并将已知面“上”“东”分别指向上面、东面,则标记“△”的为北面.答案:B6.一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为cm.解析:n棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60cm,可知每条侧棱长为12cm.答案:127.在下面四个平面图形中,哪几个是各侧棱都相等的四面体的展开图?其序号是.(把你认为正确的序号都填上)解析:折叠后,易知①②均可围成三棱锥,即四面体,且各侧棱都相等,而③④折叠后只能围成无底的四棱锥.答案:①②8.用6根长度相等的木棒,最多可以搭成个三角形.解析:用3根木棒,摆成三角形,用另外3根木棒,分别从三角形的三个顶点向上搭起,搭成一个三棱锥,共4个三角形.-3-答案:49.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解:(1)主体结构是四棱台;(2)主体结构是四棱锥;(3)主体结构是四棱柱;(4)主体结构是五棱柱.10.按下列条件分割三棱台ABC-A1B1C1(不需要画图,各写出一种分割方法即可).(1)一个三棱柱和一个多面体;(2)三个三棱锥.解:(1)在AC上取点D,使DC=A1C1,在BC上取E,使EC=B1C1,连接A1D,B1E,DE,则得三棱柱A1B1C1-DEC与一个多面体A1B1BEDA.(答案不唯一)(2)连接AB1,AC1,BC1,则可分割成三棱锥A-A1B1C1,三棱锥A-BCC1,三棱锥A-BB1C1.(答案不唯一)B组1.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()解析:动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.答案:C-4-2.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:长方体水槽固定底面一边后倾斜,水槽中的水形成的几何体始终有两个互相平行的平面,而其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,这符合棱柱的定义.答案:A3.有一种质地均匀的骰子,每一面上都有一个英文字母,如图是从3个不同的角度看同一枚骰子的情形,则H对面的字母是.解析:将原正方体侧面展开,得其表面的字母的排列如图.答案:O4.正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是.解析:如图,MF=OF-O'E=.在Rt△EMF中,∵EM=2,-5-∴EF=.答案:5.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是.(写出所有正确结论的序号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:在正方体ABCD-A1B1C1D1中,四边形ACC1A1是矩形,故①正确;②不正确;三棱锥A1-ABD满足③,故③正确;三棱锥A1-BDC1满足④,故④正确;三棱锥A1-ABC满足⑤,故⑤正确.答案:①③④⑤6.如图,在棱锥A-BCD中,截面EFG平行于底面,且AE∶AB=1∶3,已知△DBC的周长是18,求△EFG的周长.解:由已知得EF∥BD,FG∥CD,EG∥BC,∴△EFG∽△BDC.∴.又,∴.∴△EFG的周长=18×=6.7.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.-6-解:把长方体的部分面展开,如图,有三种情况.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功