2018-2019学年高中数学 第一章 计数原理 1.1 基本计数原理课件 新人教B版选修2-3

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-第一章计数原理-2-1.1基本计数原理首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点SUITANGLIANXI随堂练习课程目标学习脉络1.正确理解和掌握分类加法计数原理和分步乘法计数原理.2.能准确应用两个计数原理解决一些简单的实际问题.JICHUZHISHI基础知识首页ZHONGDIANNANDIAN重点难点SUITANGLIANXI随堂练习一二一、分类加法计数原理做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn种不同的方法.思考1分类加法计数原理有什么特点?提示:1.各类方法之间相互独立,都能独立的完成的这件事,只需将各类方法数相加.2.首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数.JICHUZHISHI基础知识首页ZHONGDIANNANDIAN重点难点SUITANGLIANXI随堂练习一二二、分步乘法计数原理做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有mn种不同的方法.那么完成这件事共有N=m1×m2×…×mn种不同的方法.思考2“完成一件事”的过程中的各步之间有怎样的关系?提示:各步之间是关联的、独立的,“关联”是确保不遗漏,“独立”是确保不重复.思考3分步乘法计数原理有什么特点?提示:分步乘法计数原理的特点是每一步中都要使用一种方法才能完成要做的事情,概括地说是分步到达、相互联系.JICHUZHISHI基础知识首页ZHONGDIANNANDIAN重点难点SUITANGLIANXI随堂练习一二名师点拨两个计数原理的区别与联系:分类加法计数原理分步乘法计数原理区别一每类办法都能独立地完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事每个步骤得到的只是中间结果(最后一步除外),任何一个步骤都不能独立完成这件事,缺少任何一个步骤也不能完成这件事,只有各个步骤都完成了,才能完成这件事区别二各类办法之间是互斥的、并列的、独立的各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复联系这两个原理都是用来计算做一件事情的不同方法数ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四探究一分类加法计数原理的应用应用分类加法计数原理解题时,要明确以下几点:(1)弄清题目中所谓“完成一件事”是什么事,完成这件事有哪些办法,怎样才算完成这件事;(2)完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法;(3)确立恰当的分类标准,准确地进行分类,要求每一种方法必属于其中的某一类方案,不同类方案的任意两种方法是不同的方法,即分类时必须做到“不重不漏”.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四【典型例题1】三边长均为整数,且最大边长为11的三角形有多少个?思路分析:由题目可获取以下主要信息:①各条边长均为整数;②构成三角形的条件;③确定分类标准.本题可按其中一条边长的取值进行分类.解:方法1:用整数x,y表示其中两边的边长,不妨设1≤x≤y≤11.要构成三角形,必须有x+y≥12.当y=11时,x=1,2,3,…,11,有11个三角形;当y=10时,x=2,3,…,10,有9个三角形;……当y=6时,x=6,只有1个三角形.故所求三角形的个数为11+9+7+5+3+1=36.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四方法2:设三角形的三边长为a,b,c,且a≤b≤c,c=11,则a+b11.而2b≥a+b11,故6≤b≤11.按b的可能取值进行分类,如下表所示:b的可能取值a的可能取值三角形的个数66175,6,7384,5,6,7,8593,4,5,6,7,8,97102,3,4,5,6,7,8,9,109111,2,3,4,5,6,7,8,9,10,1111由分类加法计数原理,符合条件的三角形共有1+3+5+7+9+11=36(个).ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四探究二分步乘法计数原理的应用应用分步乘法计数原理解题时,要注意以下三点:(1)明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某种方法能不能完成这件事,若不能,则必须要经过n个步骤才能完成这件事.(2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少任何一步,这件事都不可能完成.(3)根据题意正确分步,要求各步之间必须连续,只有按照这n步逐步地去做,才能完成这件事,各步骤之间既不能重复也不能遗漏.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四【典型例题2】(1)4张卡片的正、反面分别有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成个不同的三位数.(2)已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示多少个不同的圆?思路分析:(1)按顺序确定各位数上的数字各有几种选择后用分步乘法计数原理求解.(2)确定一个圆的方程需要分别确定出圆心的横坐标、纵坐标以及半径,可以用分步乘法计数原理解决.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四(1)解析:分三个步骤:第一步:百位可放8-1=7个数;第二步:十位可放6个数;第三步:个位可放4个数.根据分步乘法计数原理,可以组成N=7×6×4=168个不同的三位数.答案:168(2)解:按a,b,r取值顺序分步考虑:第一步:a从3,4,6中任取一个数,有3种取法;第二步:b从1,2,7,8中任取一个数,有4种取法;第三步:r从8,9中任取一个数,有2种取法.由分步乘法计数原理知,表示的不同圆有N=3×4×2=24(个).ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四探究三两个计数原理的综合应用对于较为复杂的问题,既需要进行“分类”,又需要进行“分步”,那么此时就要注意综合运用两个原理解决问题.首先要明确是先“分类”后“分步”,还是先“分步”后“分类”;其次在“分类”和“分步”的过程中,均要确定明确的分类标准和分步程序.综合应用两个原理解应用题的方法有以下几种:(1)列举法.列举法就是完成一件事,方法不是很多,可以一一列举出来,然后再一种一种地数数,进而确定完成这件事共有多少种方法.一些列式困难、数目较少的问题一般用此方法解决;(2)字典排序法.字典排序法就是把所有的字母(数字或其他)分为前后,先排前面的字母(数字或其他),前面的排完后再依次排后面的字母(数字或其他),所有的都排完后,排序结束;(3)模型法.模型法就是根据题意,构建相关图形,再利用图形来构建两个原理的模型,从而解决问题.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四【典型例题3】用0,1,2,3,4,5可以组成多少个无重复数字的比2000大的四位偶数?思路分析:先根据条件把“比2000大的四位偶数”分类,然后分别选取千位、百位、十位上的数字.解:完成这件事有三类方法:第一类是用0作个位的比2000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有4×4×3=48.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四第二类是用2作个位的比2000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,除去2,1,0,只有3个数字可以选择,有3种选法;第二步,选取百位上的数字,在去掉已经确定的首尾两数字之后,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有3×4×3=36.第三类是用4作个位的比2000大的4位偶数,其步骤同第二类.对以上三类结论用分类加法计数原理,可得所求无重复数字的比2000大的四位偶数有4×4×3+3×4×3+3×4×3=120个.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四【典型例题4】将红、黄、绿、黑四种不同的颜色涂入图中的五个区域内,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?思路分析:解决此类涂色问题的关键是找不相邻区域,确定标准合理分类.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四解:给区域标记号A,B,C,D,E(如图所示),则A区域有4种不同的涂色方法,B区域有3种,C区域有2种,D区域有2种.但E区域的涂色依赖于B与D涂的颜色,如果B与D颜色相同,则有2种涂色方法;如果不相同,则只有1种,因此应先分类后分步.第一类,当B与D同色时,不同的涂色方法有4×3×2×1×2=48(种).第二类,当B与D不同色时,不同的涂色方法有4×3×2×1×1=24(种).故共有48+24=72种不同的涂色方法.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四规律小结1.组数问题的求解策略:(1)对于组数问题,一般按特殊位置(一般是末位和首位)由谁占领分类,分类中再按特殊位置(或者特殊元素)优先的方法分步完成.如果正面分类较多,可采用间接法从反面求解.(2)解决组数问题,应特别注意其限制条件,有些条件是隐藏的,要善于挖掘.排数时,要注意特殊元素、特殊位置优先的原则.2.涂色问题的解决思路:(1)位置分析法,按照图形中各区域顺序依次涂色,在涂色时要注意可按不相邻的部分同色与不同色进行分类.(2)元素分析法,即从颜色入手进行分类.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四探究四易错辨析易错点:应用计数原理时错误地分类或分步【典型例题5】4名同学去争夺3项冠军,不允许并列,共有多少种不同的情况?错解1:第一步,第1位同学去夺这3项冠军,有可能1项都不夺或夺1项、2项、3项,因此有4种不同的情况;第二步,第2位同学去夺这3项冠军也有4种不同的情况;同理第3位、第4位同学也各有4种不同的情况.由分步乘法计数原理,共有4×4×4×4=44=256种不同的情况.错解2:第一步,第1位同学去争冠军,有3种不同的情况;第二步,第2位同学去争冠军,也有3种不同的情况;同理第3位、第4位同学也各有3种不同的情况.由分步乘法计数原理,共有3×3×3×3=34=81种不同的情况.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习探究一探究二探究三探究四错因分析:完成夺取冠军这件事,即每项冠军都有人夺取.错解1中可能有4位同学都不得冠军以及1项冠军不止1

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功