-1-第三章测评(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中错误的是()A.如果变量x与y之间存在线性相关关系,则我们根据试验数据得到的点(xi,yi)(i=1,2,…,n)将散布在某一条直线的附近B.如果两个变量x与y之间不存在线性关系,那么根据它们的一组数据(xi,yi)(i=1,2,…,n)不能写出一个线性方程C.设x,y是具有相关关系的两个变量,且y关于x的线性回归方程为x+叫做回归系数D.为使求出的线性回归方程有意义,可用统计检验的方法来判断变量y与x之间是否存在线性相关关系解析:任何一组(xi,yi)(i=1,2,…,n)都能写出一个线性方程,只是有的无意义.答案:B2.在建立两个变量y与x的回归模型时,分别选择了4个不同的模型,它们的相关指数R2如下,其中拟合得最好的模型为()A.模型1的相关指数R2为0.75B.模型2的相关指数R2为0.90C.模型3的相关指数R2为0.25D.模型4的相关指数R2为0.55解析:相关指数R2的值越大,意味着残差平方和越小,也就是说拟合效果越好.答案:B3.下列关于独立性检验的说法中,错误的是()A.独立性检验依据小概率原理B.独立性检验得到的结论一定正确C.样本不同,独立性检验的结论可能有差异-2-D.独立性检验不是判定两类事物是否相关的唯一方法答案:B4.一位母亲记录了儿子3~9岁的身高,数据略,由此建立的身高与年龄的回归模型为=7.19x+73.93,用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高一定是145.83cmB.身高在145.83cm以上C.身高在145.83cm左右D.身高在145.83cm以下解析:只能预测,不能确定实际值.答案:C5.为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了200位老年人,结构如下:性别是否需要志愿者男女需要7040不需要3060附:P(K2k0)0.0500.0100.001k03.8416.63510.828-3-K2=参照附表,得到的正确结论是().A.在犯错误的概率不超过0.1%的前提下认为“该地区的老年人是否需要志愿者提供帮助与性别有关”B.在犯错误的概率不超过0.1%的前提下认为“该地区的老年人是否需要志愿者提供帮助与性别无关”C.最多有99%的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”D.最多有99%的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”解析:由公式可计算K2的观测值k==≈18.1810.828,所以在犯错误的概率不超过0.1%的前提下认为“该地区的老年人是否需要志愿者提供帮助与性别有关”,故选A.答案:A6.三点(3,10),(7,20),(11,24)确定的线性回归方程是()A.=1.75x-5.75B.=1.75x+5.75C.=-1.75x+5.75D.=-1.75x-5.75xz解析:设回归直线为x+,则由公式得=1.75,=5.75.答案:B-4-7.下列说法:①若r0,则x增大时,y也相应增大;②若r0,则x增大时,y也相应增大;③若r=1,或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.正确的有()A.①②B.②③C.①③D.①②③解析:由相关系数的定义可知①③正确.答案:C8.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程为=0.66x+1.562,若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为()A.83%B.72%C.67%D.66%解析:因为当=7.675时,x=≈9.262,所以≈0.829≈83%.答案:A9.若对于变量y与x的10组统计数据的回归模型中,相关指数R2=0.95,又知残差平方和为120.53,那么(yi-)2的值为()A.241.06B.2410.6C.253.08D.2530.8解析:由R2=1-,得0.95=1-,得(yi-)2==2410.6.答案:B10.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线l1和l2,已知在两人的试验中发现变量x的观测-5-数据的平均值恰好相等,都为s,变量y的观测数据的平均值也恰好相等,都为t,那么下列说法正确的是()A.直线l1和直线l2有交点(s,t)B.直线l1和直线l2相交,但交点未必是点(s,t)C.直线l1和直线l2由于斜率相等,所以必定平行D.直线l1和直线l2必定重合解析:l1与l2都过样本中心点(s,t).答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系;⑤学生与他(她)的学号之间的关系.其中具有相关关系的是.解析:②⑤中两个变量之间的关系是确定性关系,不是相关关系.①③④中两个变量之间具有相关关系.答案:①③④12.由数据:(1,2),(3,4),(2,2),(4,4),(5,6),(3,3.6)得出的线性回归方程x必经过的定点是以上点中的.解析:易知,线性回归方程x必经过定点(),而根据计算可知这几个点中满足条件的是(3,3.6).答案:(3,3.6)13.下列是关于男婴与女婴出生时间调查的列联表晚上白天总计-6-男婴45ab女婴e35c总计98d180那么a=,b=,c=,d=,e=.解析:∵45+e=98,∴e=53;∵e+35=c,∴c=88;∵98+d=180,∴d=82;∵a+35=d,∴a=47;∵45+a=b,∴b=92.答案:479288825314.某学校对校选课程“人与自然”的选修情况进行了统计,得到如下数据:选未选总计男40545450女230220450总计635265900那么,在犯错误的概率不超过的前提下认为选修“人与自然”与性别有关.解析:K2=,k≈163.810.828,即在犯错误的概率不超过0.001的前提下认为选修“人与自然”与性别有关.-7-答案:0.00115.对有关数据的分析可知,每立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压度y(单位:kg/cm2)之间具有线性相关关系,其线性回归方程为=0.30x+9.99.根据建设项目的需要,28天后混凝土的抗压度不得低于89.7kg/cm2,则每立方米混凝土的水泥用量最少应为kg.(精确到0.1kg)解析:由已知,0.30x+9.99≥89.7,解得x≥265.7.答案:265.7三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作不太主动参加班级工作合计学习积极性高18725学习积极性一般61925合计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.分析:(1)运用古典概型概率公式求值.(2)求出随机变量,说明关系.解:(1)积极参加班级工作的学生有24人,不太主动参加班级工作且学习积极性一般的学生有19人,总人数为50人,-8-∴抽到积极参加班级工作的学生的概率为;抽到不太主动参加班级工作且学习积极性一般的学生的概率为.(2)k=≈11.5,∵k10.828,∴在犯错误的概率不超过0.001的前提下认为学习积极性与对待班级工作的态度有关系.17.(15分)在关于人的脂肪含量(百分比)和年龄的关系的研究中,研究人员获得了一组数据如下表:年龄x2327394145495053545657586061脂肪含量y9.517.821.225.927.526.328.229.630.231.430.833.535.234.6(1)作出散点图,并判断y与x是否线性相关,若线性相关,求线性回归方程;(2)求相关指数R2,并说明其含义;(3)给出37岁时人的脂肪含量的预测值.分析:先作出样本数据的散点图,进而求出回归模型,并依据公式求出R2,进而说明拟合效果.解:(1)散点图如图所示.由散点图可知样本点呈条状分布,脂肪含量与年龄有比较好的线性相关关系,因此可以用线性回归方程来刻画它们之间的关系.-9-设线性回归方程为x+,则由计算器算得≈0.576,=-0.448,所以线性回归方程为=0.576x-0.448.(2)(yi-)2≈37.78.(yi-)2≈644.99.R2=1-≈0.941.R2≈0.941,表明年龄解释了94.1%的脂肪含量变化.(3)当x=37时,=0.576×37-0.448≈20.9,故37岁时人的脂肪含量约为20.9%.