2018-2019学年高中数学 第二章 点、直线、平面之间的位置关系 2.2.1 直线与平面平行的判

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定A组1.如果两直线a∥b,且a∥α,则b与α的位置关系是()A.相交B.b∥αC.b⊂αD.b∥α或b⊂α解析:由a∥b,且a∥α,知b与α平行或b⊂α.答案:D2.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是()A.相交B.平行C.异面D.不确定答案:B3.在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在平面内D.异面解析:如图,由,得AC∥EF.又EF⊂平面DEF,AC⊄平面DEF,∴AC∥平面DEF.答案:A4.已知三个平面α,β,γ,一条直线l,要得到α∥β,下列条件中合适的是()A.l∥α,l∥β,且l∥γB.l⊂γ,且l∥α,l∥βC.α∥γ,且β∥γD.l与α,β所成的角相等解析:⇒α与β无公共点⇒α∥β.答案:C-2-5.如图,E,F,G分别是四面体ABCD的棱BC,CD,DA的中点,则此四面体中与过点E,F,G的截面平行的棱是.解析:∵E,F分别是BC,CD的中点,∴EF∥BD,又BD⊄平面EFG,EF⊂平面EFG,∴BD∥平面EFG.同理可得AC∥平面EFG.很明显,CB,CD,AD,AB均与平面EFG相交.答案:BD,AC6.如图,在正方体ABCD-A1B1C1D1中,E,F分别是棱BC,C1D1的中点,则EF与平面BDD1B1的位置关系是.解析:取D1B1的中点M,连接FM,MB,则FM�B1C1.又BE�B1C1,∴FM�BE.∴四边形FMBE是平行四边形.∴EF∥BM.∵BM⊂平面BDD1B1,EF⊄平面BDD1B1,∴EF∥平面BDD1B1.答案:平行7.-3-如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面五个结论:①平面EFGH∥平面ABCD;②PA∥平面BDG;③直线EF∥平面PBC;④FH∥平面BDG;⑤EF∥平面BDG.其中正确结论的序号是.解析:把图形还原为一个四棱锥,然后根据线面、面面平行的判定定理判断可知①②③④正确.答案:①②③④8.如图所示,在三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点,求证:BC1∥平面CA1D.证明:如图所示,连接AC1交A1C于点O,连接OD,则O是AC1的中点.∵点D是AB的中点,∴OD∥BC1.又∵OD⊂平面CA1D,BC1⊄平面CA1D,∴BC1∥平面CA1D.9.-4-如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC和SC的中点.求证:平面EFG∥平面BDD1B1.证明:如图所示,连接SB,SD.∵F,G分别是DC,SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴直线FG∥平面BDD1B1.同理可证EG∥平面BDD1B1.又∵直线EG⊂平面EFG,直线FG⊂平面EFG,直线EG∩直线FG=G,∴平面EFG∥平面BDD1B1.B组1.如图,在四面体ABCD中,若M,N,P分别为线段AB,BC,CD的中点,则直线BD与平面MNP的位置关系为()A.平行B.可能相交C.相交或BD⊂平面MNPD.以上都不对解析:显然BD⊄平面MNP,∵N,P分别为BC,DC中点,∴NP∥BD,而NP⊂平面MNP,∴BD∥平面MNP.答案:A-5-2.已知m,n是两条直线,α,β是两个平面.有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是()A.0B.1C.2D.3解析:把符号语言转换为文字语言或图形语言,可知①是面面平行的判定定理;②③中平面α,β还有可能相交,所以选B.答案:B3.已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,则下列五个命题中正确的命题有()①a∥c,b∥c⇒a∥b;②a∥γ,b∥γ⇒a∥b;③c∥α,c∥β⇒α∥β;④c∥α,a∥c⇒a∥α;⑤a∥γ,α∥γ⇒a∥α.A.1个B.2个C.3个D.5个解析:由公理4知①正确;②错误,a与b可能相交;③错误,α与β可能相交;④错误,可能有a⊂α;⑤错误,可能有a⊂α.答案:A4.考查①②两个命题,在“”处都缺少同一个条件,补上这个条件使其构成真命题(其中l,m为直线,α为平面),则此条件为.①⇒l∥α;②⇒l∥α.解析:①由线面平行的判定定理知l⊄α;②易知l⊄α.答案:l⊄α5.在如图的几何体中,三个侧面AA1B1B,BB1C1C,CC1A1A都是平行四边形,则平面ABC与平面A1B1C1平行吗?.(填“是”或“否”)解析:因为侧面AA1B1B是平行四边形,所以AB∥A1B1,因为AB⊄平面A1B1C1,A1B1⊂平面A1B1C1,-6-所以AB∥平面A1B1C1.同理可证:BC∥平面A1B1C1.又因为AB∩BC=B,AB⊂平面ABC,BC⊂平面ABC,所以平面ABC∥平面A1B1C1.答案:是6.如图是正方体的平面展开图,在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是.解析:展开图可以折成如图(1)所示的正方体.图(1)图(2)在正方体中,连接AN,如图(2)所示.-7-∵AB∥MN,且AB=MN,∴四边形ABMN是平行四边形.∴BM∥AN.∴BM∥平面DE.同理可证CN∥平面AF,∴①②正确;图(3)如图(3)所示,连接NF,BE,BD,DM,CF,可以证明BM∥平面AFN,BD∥平面AFN,则平面BDM∥平面AFN,同理可证平面BDE∥平面NCF,所以③④正确.答案:①②③④7.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点.问:当点Q在什么位置时,平面D1BQ∥平面PAO?解:当Q为CC1的中点时,平面D1BQ∥平面PAO.证明如下:∵Q为CC1的中点,P为DD1的中点,∴QB∥PA.∵P,O分别为DD1,DB的中点,∴D1B∥PO.∴D1B∥面PAO,QB∥面PAO.又D1B∩QB=B,∴平面D1BQ∥平面PAO.8.如图是一个以△A1B1C1为底面的直三棱柱被一平面所截得的几何体,截面为△ABC.已知AA1=4,BB1=2,CC1=3.在边AB上是否存在一点O,使得OC∥平面A1B1C1?解:-8-存在.取AB的中点O,连接OC.作OD∥AA1交A1B1于点D,连接C1D,则OD∥BB1∥CC1.因为O是AB的中点,所以OD=(AA1+BB1)=3=CC1,则四边形ODC1C是平行四边形,所以OC∥C1D.又C1D⊂平面C1B1A1,且OC⊄平面C1B1A1,所以OC∥平面A1B1C1.即在边AB上存在一点O,使得OC∥平面A1B1C1.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功