2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值学习目标导航基础知识梳理典型例题剖析重点难点突破随堂练习巩固1.理解离散型随机变量的均值的意义,会根据离散型随机变量的分布列求出均值.2.掌握离散型随机变量的均值的性质,掌握两点分布、二项分布的均值.3.会利用离散型随机变量的均值反映离散型随机变量的取值水平,解决一些相关的实际问题.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习1.离散型随机变量的均值(1)一般地,若离散型随机变量X的分布列为Xx1x2…xi…xnPp1p2…pi…pn则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.(2)离散型随机变量X的均值或数学期望反映了离散型随机变量取值的平均水平.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习(1)定义中给出了求离散型随机变量均值的方法,我们只研究有限个随机变量的均值的情况.(2)随机变量的均值E(X)是一个数值,是随机变量X本身所固有的一个数字特征.它不具有随机性,反映的是随机变量取值的平均水平.(3)若Y=aX+b,其中a,b为常数,则E(Y)=E(aX+b)=aE(X)+b.因为E(aX+b)=aE(X)+b,所以随机变量X的线性函数Y=aX+b的均值等于随机变量X的均值的线性函数.此式有如下几种特殊形式:①当b=0时,E(aX)=aE(X),此式表明常量与随机变量乘积的均值等于这个常量与随机变量的均值的乘积.②当a=1时,E(X+b)=E(X)+b,此式表明随机变量与常量和的均值等于随机变量的均值与这个常量的和.③当a=0时,E(b)=b,此式表明常量的均值等于这个常量.ZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习【做一做1-1】已知ξ的分布列为ξ-1012P14381418,则ξ的均值为()A.0B.-1C.18D.14解析:E(ξ)=-1×14+0×38+1×14+2×18=14.答案:DZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习【做一做1-2】设一随机变量ξ的均值为E(ξ)=3,则E(10ξ+2)=()A.3B.5C.30D.32解析:E(10ξ+2)=10E(ξ)+2=32.答案:DZHONGDIANNANDIAN重点难点首页JICHUZHISHI基础知识SUITANGLIANXI随堂练习2.两点分布、二项分布的均值(1)若随机变量X服从两点分布,则E(X)=p.(2)若X~B(n,p),则E(X)=np.若离散型随机变量X服从参数为N,M,n的超几何分布,则E(X)=𝑛𝑀𝑁.【做一做2】一名射手每次射击中靶的概率均为0.8,则他独立射击3次中靶次数X的均值为()A.0.8B.0.83C.3D.2.4解析:射手独立射击3次中靶次数X服从二项分布,即X~B(3,0.8),所以E(X)=3×0.8=2.4.答案:D学习目标导航基础知识梳理重点难点突破典型例题剖析随堂练习巩固1.求随机变量ξ的均值的一般步骤是什么剖析:(1)写出ξ的分布列,在求ξ取每一个值的概率时,要联系概率的有关知识,如古典概型概率,独立事件的概率等;(2)由分布列求E(ξ);(3)如果随机变量是线性关系或服从两点分布、二项分布,根据它们的均值公式计算.学习目标导航基础知识梳理重点难点突破典型例题剖析随堂练习巩固【示例】将两封信随机投入A,B,C三个空邮箱中,求A邮箱的信件数ξ的分布列及均值.分析:(1)确定ξ的所有可能取值;(2)计算出ξ取每一个值时的概率;(3)列出分布列;(4)利用E(ξ)的公式计算E(ξ).解:记A邮箱的信件数为ξ,则ξ的所有可能取值为0,1,2,P(ξ=0)=2×23×3=49,P(ξ=1)=2×23×3=49,P(ξ=2)=19,所以ξ的分布列为ξ012P494919E(ξ)=0×49+1×49+2×19=23.学习目标导航基础知识梳理重点难点突破典型例题剖析随堂练习巩固2.随机变量的均值与样本平均值有怎样的关系剖析:随机变量的均值与样本的平均值的关系:随机变量的均值是一个常数,它不依赖于样本的抽取,而样本平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机抽样,随着样本容量的增加,样本平均值越来越接近于总体的均值.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四题型一求离散型随机变量的均值【例1】根据历次比赛和训练记录,甲、乙两射手在同样的条件下进行射击,成绩的分布列如下:射手8环9环10环甲0.30.10.6乙0.20.50.3试比较甲、乙两射手射击水平的高低.解:设甲、乙两射手射击一次所得的环数分别为X1,X2,则E(X1)=8×0.3+9×0.1+10×0.6=9.3,E(X2)=8×0.2+9×0.5+10×0.3=9.1这就是说射手甲射击所得环数的数学期望比射手乙射击所得环数的数学期望高,从而说明甲的平均射击水平比乙的稍高一点.如果两人进行比赛,甲赢的可能性较大.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四求随机变量X的均值的方法和步骤:(1)理解随机变量X的意义,写出X所有可能的取值;(2)求出X取每个值的概率;(3)写出X的分布列;(4)利用均值的定义求E(X).其中求E(X)的关键是写出X的分布列,前提是准确列出X所有可能的取值,并真正理解X取值的意义.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四题型二离散型随机变量均值的性质【例2】某市出租车的起步价为6元,行驶路程不超出3km时,车费为6元,若行驶路程超出3km,则按每超出1km收费3元计费.设出租车行车路程X是一个随机变量,司机所收车费为Y(元),则Y=3X-3.已知出租车在一天内行车路程可能取的值有(单位:km)200,220,240,260,280,300,它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12.求出租车行驶一天所收车费的数学期望.分析:先求出E(X),再利用E(Y)=E(3X-3)求E(Y).解:E(Y)=E(3X-3)=3E(X)-3=3×(200×0.12+220×0.18+240×0.20+260×0.20+280×0.18+300×0.12)-3=3×250-3=747.本题利用公式E(aX+b)=aE(X)+b,将求E(Y)的问题转化为求E(X)的问题,避免了求Y的分布列的麻烦,简化了运算.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四题型三与二项分布、两点分布有关的均值【例3】某运动员的投篮命中率为p=0.6.(1)求投篮一次时命中次数ξ的均值;(2)求重复投篮5次时,命中次数η的均值.分析:第(1)问中ξ只有0,1两个结果,服从两点分布;第(2)问中η服从二项分布.解:(1)投篮一次,命中次数ξ的分布列为ξ01P0.40.6,则E(ξ)=p=0.6.(2)由题意,重复5次投篮,命中的次数η服从二项分布,即η~B(5,0.6).则E(η)=np=5×0.6=3.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四对服从二项分布或两点分布的随机变量求均值,只要利用相应公式即可,但要准确判断问题中的变量是否服从二项分布、两点分布.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四题型四易错易混题型【例4】某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行.每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为23.(1)求选手甲可进入决赛的概率;(2)设选手甲在初赛中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四错解:(1)选手甲答3题进入决赛的概率为C53×233×132=80243;选手甲答4题进入决赛的概率为C54×234×13=80243;选手甲答5题进入决赛的概率为C55×235=32243;所以选手甲进入决赛的概率为80243+80243+32243=192243=6481.(2)依题意,ξ的可能取值为3,4,5,P(ξ=3)=233+133=13;SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四P(ξ=4)=C43×233×13+C43×133×23=4081;P(ξ=5)=C53×233×132+C53×232×133=120243=4081.则答题个数的分布列为ξ345P1340814081E(ξ)=3×13+4×4081+5×4081=499.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四错因分析:(1)甲答4题进入决赛指的是前3题中答对2道题,答错1道题,第4题答对.只有前3次答题事件满足独立重复试验,同理答5题进入决赛指的是前4题答对2道题,答错2道题,第5题答对.只前4次答题事件满足独立重复试验,不是对全部进行独立重复试验.(2)甲答4题结束比赛,指答对前3题中的2道题,第4题答对进入决赛,或前3题中有2道题答错,第4题答错.甲答5题结束比赛,指答对前4题中的2道题.正解:(1)选手甲答3道题进入决赛的概率为233=827;选手甲答4道题进入决赛的概率为C32232·13·23=827;选手甲答5道题进入决赛的概率为C42232·132·23=1681.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四所以选手甲可进入决赛的概率为827+827+1681=6481.(2)依题意,ξ的可能取值为3,4,5,则有P(ξ=3)=233+133=13,P(ξ=4)=C32232·13·23+C32132·23·13=1027,P(ξ=5)=C42232·132·23+C42232·132·13=827,因此,有ξ345P131027827E(ξ)=3×13+4×1027+5×827=10727.SUITANGLIANXI随堂练习首页JICHUZHISHI基础知识ZHONGDIANNANDIAN重点难点题型一题型二题型三题型四正确理解事件发生的情况是解决本题的关键.随堂练习巩固学习目标导航基础知识梳理典型例题剖析重点难点突破123451设随机变量X~B(40,p),且E(X)=16,则p=()A.0.1B.0.2C.0.3D.0.4解析:∵E(X)=40×p=16,∴p=0.4.答案:D随堂练习巩固学习目标导航基础知识梳理典型例题剖析重点难点突破123452随机变量ξ的分布列为ξ123P0.20.5m则ξ的数学期望是()A.2B.2.1C.2.3D.随m的变化而变化解析:∵0.2+0.5+m=1,∴m=0.3,∴E(ξ)=1×0.2+2×0.5+3×0.3=2.1.答案:B随堂练习巩固学习目标导航基础知识梳理典型例题剖析重点难点突破123453已知ξ的分布